Phase Evolution and Properties of Li2O-Al2O3-SiO2-Based Glass-Ceramic for LTCC Applications

Article Preview

Abstract:

In this paper, the influences of sintering conditions on the phase transformation, microstructure, bulk density, bending strength, coefficient of thermal expansion, and dielectric properties of Li2O-Al2O3-SiO2 glass-ceramic were investigated. Conventional melt-quenching method was used to synthesize this glass-ceramic. Scanning electron microscopy, X-ray diffractometer and differential thermal analysis were employed to study this material. The XRD data show that Li2OAl2O37.5SiO2 is the main crystalline phase of this glass-ceramic. ZrO2 and CaMgSi2O6 are the two other phases in this glass-ceramic. The increasing sintering temperature and soaking time affect the phase composition obviously, which lead to the obvious variations of microstructure, mechanical, dielectric and thermal properties of this glass-ceramic. Sintering temperature and time play a key role in the sintering of Li2O-Al2O3-SiO2 glass-ceramic. The sample sintered at 800 °C for 30 min showed good microstructure, low sintering temperature of 800 °C, high density of ~2.6 g/cm3, excellent dielectric properties (εr: ~6.9, tan δ: ~2*10-3), good bending strength of 143 MPa and adjustable CTE from 1.1 to 2.7 *10-6 K-1 close that of silicon. These results mean that the obtained LAS glass-ceramic can be used in the application of LTCC substrate, especially, the manufacture of the substrate of silicon.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

257-261

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Dernovsek, M. Eberstein, W.A. Schiller, et al., J Eur Ceram Soc. 21 (2001) 1693-1697.

Google Scholar

[2] H. Jantunen, R. Rautioaho, A. Uusim, et al., J Eur Ceram Soc. 20 (2000) 2331-2336.

Google Scholar

[3] L.K. Yeung, K. -L. Wu, IEEE Trans. Microwave Theory and techniques. 51 (2003) 337-341.

Google Scholar

[4] H.I. Hsiang, S.W. Yung, C.C. Wang, Ceram Int. 40 (2014) 15807-15813.

Google Scholar

[5] T. Kokubo, S. Ito, S. Sakka, T. Yamamuro, J Mater Sci. 21 (1986) 536-540.

Google Scholar

[6] Tummala, R. Rao, J Am Ceram Soc. 74 (1991) 895-908.

Google Scholar

[7] K.H. Lee, Y.S. Kim, Y.J. Jung, et al., J Kor Ceram Soc. 44 (2007) 451-456.

Google Scholar

[8] Y. Pan, J.L. Baptista, J Eur Ceram Soc. 16 (1996) 1221-1230.

Google Scholar

[9] M. Hu, Y. Fu, D. Zhou, H. Gu, Y. Wang, J Mater Sci-Mater El, 23 (2012) 1775-1782.

Google Scholar

[10] O.R.K. Montedo, F.J. Floriano, J.D.O. Filho, Ceram Int. (2011) 1865-1871.

Google Scholar

[11] O.R.K. Montedo, D. Hotza, A.P.N. de Oliveira, et al., Adv Mater Sci Eng. 2012 (2012) 8.

Google Scholar

[12] I. Alekseeva, A. Baranov, O. Dymshits, et al., J Non-Cryst Solids. 357 (2011) 3928–3939.

Google Scholar

[13] M.Y. Chen, J. Juuti, C.S. Hsi, et al., J Am Ceram Soc. 98 (2015) 1133-1136.

Google Scholar

[14] D. Zou, Q. Zhang, H. Yang, S. Li, J Eur Ceram Soc. 28 (2008) 2777–2782.

Google Scholar

[15] H.R. Fernandes, D.U. Tulyaganov, M.J. Pascual, et al., J Eur Ceram Soc. 32 (2012) 2283–2292.

Google Scholar