Preparation and Properties of Si3N4-SiC Radar Wave-Absorbing Nanocomposites

Article Preview

Abstract:

The vacuum-sintering technology was adopted to prepared Si3N4-SiC composite ceramic, a type of Radar Wave-Absorbing materials (RAW). The mechanical performances of the composite materials were tested and the influences of SiC powers on the mechanics performances and microstructure of Si3N4 ceramics were investigated. The results show that the sintering density, the content of size ofβ-Si3N4 and the strength of Si3N4-SiC all decrease along with the increase of SiC powers in sample, compared with the pure matrix Si3N4 .Meanwhile, Relationship between SiC content and relative permittivity of Si3N4-SiC within the frequency range of 8.2–12.4 GHz (X-band) was studied. The average of relative permittivityεof Si3N4-SiC increased from 7.878 to 13.88 and the average of dielectric loss tanδincreased from 5.6×10-3 to 0.7869 when the content of SiC increased from 0 to 15 wt.%. The excellent microwave absorbing abilities of Si3N4–SiC ceramic were attributed to the interfacial polarization at interface between Si3N4 and SiC and at grain boundary between SiC nanocrystals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

462-466

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] DDL Chung, Electromagnetic interference shielding effectiveness of carbon materials, Carbon. 39 (2001) 279-285.

DOI: 10.1016/s0008-6223(00)00184-6

Google Scholar

[2] D Micheli, R Pastore, G Gradoni, et al, Reduction of satellite electromagnetic scattering by carbon nano-structured multilayers, ACTA Astronaut. 88(2013) 61-73.

DOI: 10.1016/j.actaastro.2013.03.003

Google Scholar

[3] P Liu, Y Huang, L Wang, et al., Hydrothermal synthesis of reduced grapheme oxide-Co3O4 composites and the excellent microwave electromagnetic properties, Mater. Lett. 107(2013) 166-169.

DOI: 10.1016/j.matlet.2013.05.136

Google Scholar

[4] B Wang, J Zhang, T Wang, L Qiao, F Li, Synthesis and enhanced microwave absorption properties of Ni@Ni2O3 core shell particles, J Alloy Compd. 567(2013) 21-25.

DOI: 10.1016/j.jallcom.2013.03.028

Google Scholar

[5] W. Zhou, X Hu, X Bai, et al, Synthesis and electromagnetic, microwave absorbing properties of core-shell Fe3O4-poly (3, 4-ethylenedioxythiophene) microspheres, ACS Appl. Mater. Interfaces. 10 (2011) 3839-3845.

DOI: 10.1021/am2004812

Google Scholar

[6] DL Ridpath, DA Wright, Electrical conductivity of reduced barium titanate crystals, J. Mater. Sci. 5 (1970) 487-491.

DOI: 10.1007/bf00556035

Google Scholar

[7] X. W. Yin, L. Kong, L. T. Zhang, L. F. Cheng, N. Travitzky, P. Greil, Electromagnetic properties of Si-C-N based ceramics and composites, Int. Mater. Rev. 59(2014) 326-355.

DOI: 10.1179/1743280414y.0000000037

Google Scholar

[8] X. M. Yu, W. C. Zhou, F. Luo, W. J. Zheng and D. M. Zhu, Effect of fabrication atmosphere on dielectric properties of SiC/ SiC composites, Journal of alloys and compounds. 479(2009) L1-L3.

DOI: 10.1016/j.jallcom.2008.12.049

Google Scholar

[9] H. T. Liu, H. F. Cheng, J. Wang and G. P. Tang, Dielectric properties of the SiC fiber-reinforced SiC matrix composites with the CVD SiC interphases, J. Alloys Comp. 491(2010) 248-251.

DOI: 10.1016/j.jallcom.2009.09.163

Google Scholar

[10] R. Zhang, L. Gao, H. L. Wang, J. K. Guo, Dielectric properties and space charge behavior in SiC ceramic capacitor, Appl. Phys. Lett. 85(2004) 2047-(2049).

DOI: 10.1063/1.1794866

Google Scholar

[11] X. L. Su, J. Xu, Z. M. Li, et al., A Method to Adjust Dielectric Property of SiC Powder in the GHz Range, Journal of materials science &technology. 27(2011) 421-425.

DOI: 10.1016/s1005-0302(11)60085-6

Google Scholar

[12] G.P. Zheng, X.W. Yin, J. Wang, et al., Complex permittivity and microwave absorbing property of Si3N4-SiC composite ceramic, Journal of materials science &technology. 28(2012) 745-750.

DOI: 10.1016/s1005-0302(12)60124-8

Google Scholar

[13] X.L. Su, W.C. Zhou, Z.M. Li, et al., Preparation and Dielectric Properties of Nonstoichiometric beta-SiC Powder by combustion synthesis, J. Mater. Sci. Technol. 25(2009) 401-404.

Google Scholar

[14] K. Jian, Z. H. Chen, Q. S. Ma, et al., Effects of pyrolysis temperatures on the microstructure and mechanical properties of 2D-Cf/SiC composites using polycarbosilane, Ceram. Int. 33(2007) 73-76.

DOI: 10.1016/j.ceramint.2005.07.017

Google Scholar

[15] N. P. Padture, B. R. Lawn, Toughness properties of a silicon carbide with an in situ induced heterogeneous grain structure, Journal of the American Ceramic Society. 75(1994) 2518-2522.

DOI: 10.1111/j.1151-2916.1994.tb04637.x

Google Scholar

[16] M. A. Mulla, V. D. Krstic, Pressureless sintering of b- SiC with Al2O3 additions, Journal of Materials Science. 29 (1994) 934-938.

DOI: 10.1007/bf00351412

Google Scholar

[17] A. Kovalcikova, J. Dusza, P. Sajgalik, Influence of the heat treatment on mechanical properties and oxidation resistance of SiC-Si3N4 composites, Ceramics International. 39(2013) 7951-7957.

DOI: 10.1016/j.ceramint.2013.03.059

Google Scholar

[18] A. Vema, P. Krishna, Polymorphism and polytypism in Crystals, John Wiley & Sons, New York, (1951).

Google Scholar

[19] C. Kawai, Effect of grain size distribution on the strength of porous Si3N4 ceramics composed of elongated b- Si3N4 grains, J. Mater. Sci. 36(2001) 5713-5717.

Google Scholar

[20] H. S. Ku, E. Siores, J. A. R. Ball, Microwave facilities for welding thermoplastic composites and preliminary results, J. Microwave Powder Electromagnetic Energy. 34(1999) 195-205.

DOI: 10.1080/08327823.1999.11688406

Google Scholar

[21] W. L. Song, M. S. Cao, Z. L. Hou, et al., High-temperature microwave absorption and evolutionary behavior of multi-walled carbon-nanotube nanocomposite, Scripta Mater., 61(2009) 201-204.

DOI: 10.1016/j.scriptamat.2009.03.048

Google Scholar

[22] X. Li, L. Zhang, X. Yin, Z. Yu, Mechanical and dielectric properties of porous Si3N4-SiC (BN) ceramic, Journal of Alloys and Compounds. 490(2010) L40-L43.

DOI: 10.1016/j.jallcom.2009.10.107

Google Scholar