Fabrication of Mullite Coating and its Oxidation Protection for Carbon Fiber Reinforced SiC Composites

Article Preview

Abstract:

To protect carbon fiber-reinforced SiC (C/SiC) composites against oxidation,mullite coating was prepared on C/SiC composites by dip-coating method with high solid content Al2O3-SiO2 sol as raw materials. X-ray diffraction and scanning electron microscopy were employed to analyze the phase and microstructure of the coating. The results show that the as-prepared coating is SiO2-rich, monolithic and well bonded with substrate without penetrating crack, giving rise to good oxidation-resistance. After soaked at 1400°C for 30min under static air, the coated C/SiC composites possess 87% of original flexural strength. As a result of sealing and filling of cracks and pores by viscous SiO2 in coating, the coated C/SiC composites exhibit improved oxidation resistance at 1500°C and 1600°C. There is no change in flexural strength after oxidized at 1500°C and 1600°C for 30min, respectively. Nevertheless, the carbothermal reduction between viscous SiO2 and free carbon in C/SiC substrate would occur obviously when oxidation temperature was elevated or oxidation time was prolonged, leading to local foaming in coating and decreasing in oxidation resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

476-480

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.F. Cheng, Y.D. Xu, L.T. Zhang, Sci. Eng. Comp. Mater. 10 (2002) 377~382.

Google Scholar

[2] R.V. Hiliery, N. Bartlett, H.L. Bernstein, R.F. Davis, H. Herman, Coatings for High -Temperatures Structural Materials: Trends and Opportunities, National Academy Press, Washington, DC, (1996).

Google Scholar

[3] Y.S. Liu, L.F. Cheng, L.T. Zhang, et al., Mater. Sci. Eng. A 466 (2007) 172–177.

Google Scholar

[4] S.J. Wu, L.F. Cheng, L.T. Zhang, Surf. Coat. Technol. 200 (2006) 4489~4492.

Google Scholar

[5] S.J. Wu, L.F. Cheng, L.T. Zhang, J. Inorg. Mater. 20 (2005) 251~256.

Google Scholar

[6] Q. Zhang, L. Cheng, W. Wang, Mater. Sci. Eng. A, 473 (2008) 254~258.

Google Scholar

[7] S.J. Wu, L.F. Cheng, L.T. Zhang, Surf. Coat. Technol. 200 (2006) 4489~4492.

Google Scholar

[8] X.H. Zheng, Y.G. Du, J.Y. Xiao, Y.F. Lu, C.H. L, Mater. Sci. Eng. A 505 (2009) 187–190.

Google Scholar

[9] L.F. Cheng, Y.D. Xu, L.T. Zhang, R. Gao, Carbon 39 (2001) 1127–1133.

Google Scholar

[10] J.D. Webster, M.E. Westwood, F.H. Hayers, J. Eur. Ceram. Soc. 18 (1998) 2345~2350.

Google Scholar

[11] M. Aparicio, A. Durán, J. Am. Ceram. Soc. 83 (2000) 1351~1355.

Google Scholar

[12] M. Aparicio, A. Duran, Ceram. Int. 31 (2005) 631–634.

Google Scholar

[13] X.H. Zheng, Y.G. Du, J.Y. Xiao, W.J. Zhang, L.C. Zhang, Appl. Surf. Sci. 255 (2009) 4250-4254.

Google Scholar

[14] J. Liu, L.T. Zhang, F. Hu, J. Yang, et al., J. Eur. Ceram. Soc. 33 (2013) 433-439.

Google Scholar

[15] J. Zhang, W. Li, S. Wang, S.X. Wang, Surf. Coat. Technol., 278 (2015) 80-86.

Google Scholar

[16] Y.G. Wang, Y.H. Wu, L. f. Cheng, L.T. Zhang, J. Am. Ceram. Soc. (2005) 424-430.

Google Scholar

[17] M. Pavese, P. Fino, C. Badini, Surf. Coat. Technol. 202 (2008) 2059~(2067).

Google Scholar

[18] J. Liu, L.T. Zhang, J. Yang, J. Eur. Ceram. Soc. 32 (2012) 705~710.

Google Scholar

[19] T. Ban, S. Hayashi, A. Yasumori, J. Eur. Ceram. Soc. 16 (1996) 127~132.

Google Scholar

[20] C.H. Rüscher, H. Fritze, G. Borchardt, J. Am. Ceram. Soc. 1997, 80 (1997): 3225~3228.

Google Scholar

[21] H. Fritze, J. Jojic, T. Witke, J. Eur. Ceram. Soc. 18 (1998) 2351~2364.

Google Scholar

[22] L.S. Cividanes, T.M.B. Campos, L.A. Rodrigues, J. Sol-Gel. Sci. Tech. 55 (2010) 111~125.

Google Scholar

[23] H.T. Liu, Q.S. Ma, W.D. Liu, Ceram. Int. 40 (2014) 7203-7212.

Google Scholar

[24] C. Ma, H.J. Li, H. Wu, J. Mater. Sci. Technol. 29 (2013) 29~33.

Google Scholar