[1]
R. Reidel, Handbook of Ceramic Hard Materials, Wiley-VCH, (2000).
Google Scholar
[2]
Cook MW, Bossom PK. Trends and recent developments in the material manufacture and cutting tool application of polycrystalline diamond and polycrystalline cubic boron nitride, Int J Refract Met Hard Mater. 18(2000)147–52.
DOI: 10.1016/s0263-4368(00)00015-9
Google Scholar
[3]
Kurt A, Seker U. The effect of chamfer angle of polycrystalline cubic boron nitride cutting tool on the cutting forces and the tool stresses in finishing hard turning of AISI 52100 steel, Mater Des 26(2005)351–6.
DOI: 10.1016/j.matdes.2004.06.022
Google Scholar
[4]
Arsecularatne JA, Zhang LC, Montross C. MathewP. On machining of hardened AISI D2 steel with PCBN tools. J Mater Process Technol. 171(2006)244–52.
DOI: 10.1016/j.jmatprotec.2005.06.079
Google Scholar
[5]
Ding WF, Xu JH, Chen ZZ, Su HH, Fu YC , Grain wear of brazed polycrystalline CBN abrasive tools during constant-force grinding Ti-6Al-4 V alloy, Int. J. Adv. Manuf. Technol. 52 (2011)969–976.
DOI: 10.1007/s00170-010-2777-1
Google Scholar
[6]
Zhang XH, Deng ZH, An WK, Cao H, A methodology for contour error intelligent precompensation in cam grinding, Int. J. Adv. Manuf. Technol. 64 (2013)165–170.
DOI: 10.1007/s00170-012-4027-1
Google Scholar
[7]
X. Rong, T. Yano, TEM investigation of high pressure reaction sintered cBN-Al composites, J. Mater. Sci. 39 (2004) 4705–4710.
DOI: 10.1023/b:jmsc.0000034176.85765.40
Google Scholar
[8]
M. Hotta, T. Goto, Densification and microstructure of Al2O3–cBN composites prepared by spark plasma sintering, J. Ceram. Soc. Jpn. 116 (2008) 744–748.
DOI: 10.2109/jcersj2.116.744
Google Scholar
[9]
Y. Sahin, Comparison of tool life between ceramic and cubic boron nitride (cBN) cutting tools when machining hardened steels, J. Mater. Process. Technol. 209 (2009)3478–3489.
DOI: 10.1016/j.jmatprotec.2008.08.016
Google Scholar
[10]
X. Zhang, L. Weng, J. Han, S. Meng, W. Han, Preparation and thermal ablation behavior of HfB2-SiC-based ultra-high-temperature ceramics under severe heat conditions, Int. J. Appl. Ceram. Technol. 6(2009)134–144.
DOI: 10.1111/j.1744-7402.2008.02264.x
Google Scholar
[11]
F. Monteverde, A. Bellosi, The resistance to oxidation of an HfB2-SiC composite, J. Eur. Ceram. Soc. 25(2005)1025–1031.
DOI: 10.1016/j.jeurceramsoc.2004.05.009
Google Scholar
[12]
V. Medri, C. Capiani, A. Bellosi, Properties of slip-cast and pressureless-sintered ZrB2-SiC composites, Int. J. Appl. Ceram. Technol. 83 (2011) 51–359.
DOI: 10.1111/j.1744-7402.2009.02484.x
Google Scholar
[13]
L. Rangaraj, C. Divakar, V. Jayaram, Fabrication and mechanisms of densification of ZrB2-based ultra high temperature ceramics by reactive hot pressing, J. Eur. Ceram. Soc. 30 (2010) 129–138.
DOI: 10.1016/j.jeurceramsoc.2009.08.003
Google Scholar
[14]
Sea-Hoon Lee, Jin-Seok Lee, Hidehiko Tanaka, Sung-Churl Choi, Al3BC3 Powder: Processing and synthetic mechanism, J. Am. Ceram. Soc. 92(2009)2831-2837.
Google Scholar