Preparation and Properties of TiB2-SiC-Si Composites Fabricated by Reaction Bonding

Article Preview

Abstract:

TiB2-SiC-Si composite was fabricated by reaction bonding. The influence of carbon content on the phase compositions, microstructure, density and mechanical properties was studied. The results showed that the composite consists of TiB2, SiC and Si phases. The vol% of SiC increased with the increase of C contents, while that of TiB2 and free silicon reduced respectively. The mechanical properties of TiB2-SiC-Si composites are improved initially and then deteriorated with the increase in C contents of which the optimal amount is 8 %. The optimum open porosity, volume density, Vikers-hardness, flexural strength and fracture toughness of the obtained TiB2-SiC-Si composite are 0.12 %, 3.73 g/cm3, 17 GPa, 290 MPa and 5.9 MPa·m1/2, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

539-546

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.M. Wang, Y.F. Zheng, H. Wang, Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics, J. Eur. Ceram. Soc. 22 (2002) 1045-1049.

DOI: 10.1016/s0955-2219(01)00424-1

Google Scholar

[2] G.B. Raju, B. Basu, N.H. Tak, Temperature dependent hardness and strength properties of TiB2 with TiSi2 sinter-aid, J. Eur. Ceram. Soc. 29 (2009) 2119-2128.

DOI: 10.1016/j.jeurceramsoc.2008.11.018

Google Scholar

[3] A. Mukhopadhyay, G.B. Raju, B. Basu, Correlation between phase evolution, mechanical properties and instrumented indentation response of TiB2-based ceramics, J. Eur. Ceram. Soc. 29 (2009) 505-516.

DOI: 10.1016/j.jeurceramsoc.2008.06.030

Google Scholar

[4] L. Baca, Z. Lences, C. Jogl, Microstructure evolution and tribological properties of TiB2/Ni-Ta cermets, J. Eur. Ceram. Soc. 32 (2012) 1941-(1948).

DOI: 10.1016/j.jeurceramsoc.2011.10.039

Google Scholar

[5] T.S.R. Ch. Murthy, B. Basu, A. Srivastava, Tribological properties of TiB2 and TiB2-MoSi2 ceramic composites, J. Eur. Ceram. Soc. 26 (2006) 1293-1300.

DOI: 10.1016/j.jeurceramsoc.2005.01.054

Google Scholar

[6] A. Momozawa, R. Telle, Controlled precipitation of W2B4 platelets and of β-WB nanolaminates for the in situ reinforcement of ternary TiB2-W2B4-CrB2 ceramics, J. Eur. Ceram. Soc. 32 (2012) 85-95.

DOI: 10.1016/j.jeurceramsoc.2011.07.030

Google Scholar

[7] A.S. Namini, S.N.S. Gogani, M.S. Asl, Microstructural development and mechanical properties of hot pressed SiC reinforced TiB2 based composite, Int. J. Refract. Met. H. 51 (2015) 169-179.

DOI: 10.1016/j.ijrmhm.2015.03.014

Google Scholar

[8] J.P. Song, C.Z. Huang, M. Lv, Effects of TiC content and melt phase on microstructure and mechanical properties of ternary TiB2-based ceramic cutting tool materials, Mat. Sci. Eng. A. 605 (2014) 137-143.

DOI: 10.1016/j.msea.2014.03.036

Google Scholar

[9] M.L. Gu, C.Z. Huang, B. Zou, Effect of (Ni, Mo) and TiN on the microstructure and mechanical properties of TiB2 ceramic tool materials, Mat. Sci. Eng. A. 433 (2006) 39-44.

DOI: 10.1016/j.msea.2006.07.012

Google Scholar

[10] K.M. Taylor and R.J. Pallick, U.S. Patent 3, 765, 300. (1973).

Google Scholar

[11] M.K. Aghajanian, B.N. Morgan, J.R. Singh, A new family of reaction bonded ceramics for armor application, Ceram. Trans. 134 (2002) 527-539.

Google Scholar

[12] R. Voytovych, V. Bougiouri, N.R. Calderon, Reactive infiltration of porous graphite by NiSi alloys, Acta Mater. 56 (2008) 2237-2246.

DOI: 10.1016/j.actamat.2008.01.011

Google Scholar

[13] Y.X. Wang, S.H. Tan, D.L. Jiang, The effect of porous carbon preform and the infiltration process on the properties of reaction-formed SiC, Carbon. 42 (2004) 1833-1839.

DOI: 10.1016/j.carbon.2004.03.018

Google Scholar

[14] S. Hayun, N. Frage, M.P. Dariel, The morphology of ceramic phases in BxC-SiC-Si infiltrated composites, J. Solid State Chem. 179 (2006) 2875-2879.

DOI: 10.1016/j.jssc.2006.01.031

Google Scholar

[15] D. Mallick, T.K. Kayal, J. Ghosh, Development of multi-phase B-Si-C ceramic composite by reaction sintering, Ceram. Int. 35 (2009) 1667-1669.

DOI: 10.1016/j.ceramint.2008.07.015

Google Scholar

[16] C.P. Zhang, H.Q. Ru, W. Wang, The role of infiltration temperature in the reaction bonding of boron carbide by silicon infiltration, J. Am. Ceram. Soc. 97 (2014) 3286-3293.

DOI: 10.1111/jace.13085

Google Scholar

[17] A.L. Yurkov, A.M. Starchenko, B.S. Skidan, Reaction sintering of boron carbide, Refract. Ind. Ceram. +. 30 (1989) 731-736.

DOI: 10.1007/bf01288282

Google Scholar

[18] W.D. Callister, Materials science and engineering: an introduction, John Wiley & Sons Inc, New York, (2007).

Google Scholar

[19] G.T. Hahn, The influence of microstructure on brittle fracture toughness, Metall. Trans. A. 15 (1984) 947-959.

DOI: 10.1007/bf02644685

Google Scholar

[20] S.R. Choi, W.A. Sanders, J.A. Salem, Young's modulus, strength and fracture toughness as a function of density of in situ toughened silicon nitride with 4 wt% Scandia, J. Mater. Sci. Lett. 14 (1995) 276-278.

DOI: 10.1007/bf00275622

Google Scholar

[21] R. Chaim, M. Hefetz, Effect of grain size on elastic modulus and hardness of nanocrystalline ZrO2-3 wt%Y2O3 ceramic, J. Mater. Sci. 39 (2004) 3057-3061.

DOI: 10.1023/b:jmsc.0000025832.93840.b0

Google Scholar

[22] U. Engel, H. Hubner, Strength improvement of cemented carbides by hot isostatic pressing, J. Mater. Sci. 13 (1978) 2003-(2012).

DOI: 10.1007/bf00552908

Google Scholar

[23] Q. Chang, D.L. Chen, H.Q. Ru, Toughening mechanism in iron-containing hydroxyapatite/titanium composites, Biomaterials. 31 (2010) 1493-1501.

DOI: 10.1016/j.biomaterials.2009.11.046

Google Scholar