Wetting and Interfacial Behaviors of Molten Ag, Cu and Ag-28Cu on WC-8Co Cemented Carbide

Article Preview

Abstract:

The wetting and spreading of molten Cu, Ag and Ag-28Cu (wt.%) on the WC-Co cemented carbide were investigated by the sessile drop technique at different temperatures, and the interfacial behaviors of the metal/WC-Co couples were analyzed by scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The experimental results showed that the testing temperature and the composition of drop can play a key role in the wetting and spreading, and the good wettability with contact angle of less than 40o can be obtained. Moreover, the strongest interactions can be produced between the molten Cu and the WC-Co substrate at the higher temperature of 1100 oC due to the strong interdiffusion and solid solution between Cu and Co, resulting in the lowest equilibrium contact angle of ~0o. In addition, smooth and clean interfaces, without formation of visible interfacial reaction layer, were observed in all the three wetting systems. This work may also provide guidance to brazing of the cemented carbide.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

555-560

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Maximenko, G. Roebben, O. Van Der Biest, Modelling of metal-binder migration during liquid-phase sintering of graded cemented carbides, J. Mater. Process. Technol. 160 (2005) 361-369.

DOI: 10.1016/j.jmatprotec.2004.06.023

Google Scholar

[2] W. Lengauer, K. Dreyer, Functionally graded haredmetals, J. Alloy. Compd. 338 (2002)194-212.

Google Scholar

[3] U. Beste, T. Hartzell, H. Engqvist, N. Axen, Surface damage on cemented carbide rock-drill buttons, Wear. 249 (2001) 324-329.

DOI: 10.1016/s0043-1648(01)00553-1

Google Scholar

[4] L.J. Prakash, Application of fine grained tungsten carbide based cemented carbides, Int. J. Refract. Met. H. 13 (1995) 257-264.

DOI: 10.1016/0263-4368(95)92672-7

Google Scholar

[5] G. Gill, B. Szesny, K. Dreyer, H. van den Berg, J. Schmidt, T. Gestrich, G. Leitner, Submicron and ultrafine grained hardmetals for microdrills and metal cutting inserts, Int. J. Refract. Met. H. 20 (2002) 3-22.

DOI: 10.1016/s0263-4368(01)00066-x

Google Scholar

[6] K. K Jangra, An experimental study for multi-pass cutting operation in wire electrical discharge machining of WC-5. 3% Co composite, Int. J. Adv. Manuf. Tech. 76 (2015) 971-982.

DOI: 10.1007/s00170-014-6218-4

Google Scholar

[7] H.S. Chen, K.Q. Feng, S.F. Wei, J. Xiong, Z.X. Guo, H. Wang, Microstructure and properties of WC-Co/3Cr13 joints brazed using Ni electroplated interlayer, Int. J. Refract. Met. H. 33 (2012) 70-74.

DOI: 10.1016/j.ijrmhm.2012.02.018

Google Scholar

[8] W.B. Lee, B.D. Kwon S.B. Jung, Effect of bonding time on joint properties of vacuum brazed WC-Co hard metal/carbon steel using stacked Cu and Ni alloy as insert metal, Mater. Sci. Technol. -lond. 20 (2004) 1474-1478.

DOI: 10.1179/026708304x4312

Google Scholar

[9] P.Q. Xu, D. Ma, C.W. Ma. Analysis of WC Dissolution Phenomenon Happened in TIG Welded Joint of Cemented Carbide and Invar Alloy, Appl. Mech. Mate. 184-185 (2012) 896-899.

DOI: 10.4028/www.scientific.net/amm.184-185.896

Google Scholar

[10] P.Q. Xu, X.J. Zhao, D.X. Yang,S. Yao, Study on filler metal (Ni-Fe-C) during GTAW of WC-30Co to 45 "carbon steel, J. Mater. Sci. 40 (2005) 6559-6564.

DOI: 10.1007/s10853-005-1547-1

Google Scholar

[11] X.J. Zhao D.X. Yang, H. Wang, K.J. Takazawa, K.S. Tagashira, H.D. Yamamori, Microstructure of electron beam weld joints between cemented carbide YG 30 and carbon steel, Mater. Mech. Eng. 29 (2005) 21-26 (In Chinese).

Google Scholar

[12] G.Q. Chen, B.G. Zhang, Z.Z. Wu, W. Mao, J.C. Feng, Int. J. Refract. Met. H. 24 (2013) 58-63.

Google Scholar

[13] C. Barbatti,J. Garcia,G. Liedl, A. Pyzalla, Joining of cemented carbides to steel by laser beam welding, Materialwiss. Werkst. 38 (2007) 907-914.

DOI: 10.1002/mawe.200700196

Google Scholar

[14] A.P. Costa, L. Quintino, M. Greitmann, Laser beam welding hard metals to steel, J. Mater. Process. Technol. 141 (2003) 163-173.

DOI: 10.1016/s0924-0136(02)00954-8

Google Scholar

[15] A. Costa, R.M. Miranda, L. Quintino, Materials behavior in laser welding of hardmetals to steel, Mater. Manuf. Process. 21 (2006) 459-465.

DOI: 10.1080/10426910500471458

Google Scholar

[16] M.I. Barrena, J.M. Gomez de Salazar, L. Matesanz, Interfacial microstructure and mechanical strength of WC–Co/90MnCrV8 cold work tool steel diffusion bonded joint with Cu/Ni electroplated interlayer, Mater. Design. 31 (2010) 3389-3394.

DOI: 10.1016/j.matdes.2010.01.050

Google Scholar

[17] T. Iamboliev, S. Valkanov, and S. Atanasova, Microstructure embrittlement of hard metal-steel joint obtained under induction heating diffusion bonding, Int. J. Refract. Met. H. 37 (2013) 90-97.

DOI: 10.1016/j.ijrmhm.2012.10.021

Google Scholar

[18] Y.G. Guo, B.X. Gao, G.W. Liu, T.T. Zhou, G.J. Qiao, Effect of temperature on the microstructure and bonding strength of partial transient liquid phase bonded WC-Co/40Cr joints using Ti/Ni/Ti interlayers, Int. J. Refract. Met. H. 51 (2015).

DOI: 10.1016/j.ijrmhm.2015.04.018

Google Scholar

[19] P. Shen, X.H. Zheng, H.J. Liu, Q.C. Jiang, Wetting of WC by a Zr-base metallic glass-forming alloy, Mater. Chem. Phys. 139 (2013) 646-653.

DOI: 10.1016/j.matchemphys.2013.02.012

Google Scholar

[20] Y.W. Zhao, Y.J. Wang, Y. Zhou, P. Shen, Reactive wetting and infiltration of polycrystalline WC by molten Zr2Cu alloy, Scripta Mater. 64 (2011) 229-232.

DOI: 10.1016/j.scriptamat.2010.10.018

Google Scholar

[21] H. Bakar, ASM Handbook, Volume 3 Alloy Phase Diagrams, ASM international, Materials Park, Ohio, (1992).

Google Scholar