Effect of Al and Si Additions on the Synthesis of Spark Plasma Sintered Zr2Al4C5 Creamic

Article Preview

Abstract:

The Zr2Al4C5 ceramic was successfully fabricated by the spark plasma sintering at 1800 °C for 10 min under uniaxial 20 MPa pressure in vacuum using a mixed raw materials of Zr, Al, Si and graphite powders. The X-ray diffraction analysis results showed that the unexpected Zr2Al3C5 phase rather than target compound Zr2Al4C5 formed in the sintered samples. An initial Zr:Al:C molar ratio of 2:4.2:4.8 for raw powders, and even 55 mol.% excess Al, did not lead to a phase transformation from Zr2Al3C5 to Zr2Al4C5. When 4 wt.% Si was induced in the starting powders, the major phase became Zr2Al4C5 and no obvious Zr2Al3C5 was detected in the sintered samples with an initial Zr:Al:C molar ratio of 2:6.2:4.8 (55 mol.% excess Al). The introduction of Si could suppress and even remove additional ZrC, and Si atoms would exclusively occupy the site of Al to make Zr2Al4C5 become a stable solid solution. The scanning electron microscopy observation showed that the as-synthesized Zr2Al4C5 grains had elongated, rod-like and/or plate-like shapes. The mechanical properties of the sintered Zr2Al4C5 ceramic were also investigated, and it showed a hardness of 11.06±0.34 GPa and a fracture toughness of 4.6 ± 0.4 MPa×m1/2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

530-534

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Kral, W. Lengauer, D. Rafaja, and P. Ettmayer, Critical Review on the lastic Properties of Transition Metal Carbides, Nitrides and Carbonitrides, J. Alloys Compd. 265 (1998) 215-33.

DOI: 10.1016/s0925-8388(97)00297-1

Google Scholar

[2] R. Chang and I. J. Graham, Low-Temperature Elastic Properties of ZrC and TiC, J. Appl. Phys. 37 (1966) 3778-83.

Google Scholar

[3] M. H. Leipold and T. H. Nielsen, Mechanical Properties of Hot-Pressed Zironium Carbide Tested to 26001C, J. Am. Ceram. Soc. 47 (1964) 419-24.

Google Scholar

[4] L.F. He, Z.J. Lin, J.Y. Wang, Y.W. Bao, M.H. Li, Y.C. Zhou, Synthesis and Characterization of Bulk Zr2Al3C4 Ceramic, J. Am. Ceram. Soc. 90 (2007) 3687-89.

Google Scholar

[5] L.F. He, Y.C. Zhou, Y.W. Bao, Z.J. Lin, J.Y. Wang, Physical, and Mechanical Properties of Bulk Zr3Al3C5 Ceramic, J. Am. Ceram. Soc. 90 (2007) 1164-70.

Google Scholar

[6] R.B. Zhang, G.Q. Chen, W.B. Han, Synthesis, mechanical and physical properties of bulk Zr2Al4C5 ceramic, Mater. Chem. Phys. 119 (2010) 261-65.

Google Scholar

[7] K. Sugiura, T. Iwata, H. Yoshida, S. Hashimoto, K. Fukuda, Syntheses, crystal structures and Si solubilities of new layered carbides Zr2Al4C5 and Zr3Al4C6, J. Solid. State. Chem. 181 (2008) 2864-68.

DOI: 10.1016/j.jssc.2008.07.017

Google Scholar

[8] L.F. He, X.P. Lu, Y.W. Bao, J.Y. Wang, Y.C. Zhou, High-temperature internal friction, stiffness and strength of Zr-Al(Si)-C ceramics, Scr. Mater. 61 (2009) 60-63.

DOI: 10.1016/j.scriptamat.2009.03.004

Google Scholar

[9] Z.J. Lin, L.F. He, J.Y. Wang, M.S. Li, Y.W. Bao, Y.C. Zhou, Atomic-scale microstructure and elastic properties of quaternary Zr-Al-Si-C ceramics, Acta Mater. 56 (2008) 2022-31.

DOI: 10.1016/j.actamat.2007.12.055

Google Scholar

[10] L. F. He, Y. W. Bao, M. S. Li, J. Y. Wang, and Y. C. Zhou, Oxidation of Zr2[Al(Si)]4C5 and Zr3[Al(Si)]4C6, J. Mater. Res. 23 (2008) 3339-46.

DOI: 10.1111/j.1551-2916.2010.03718.x

Google Scholar

[11] J. Xu, and Y. Akishige, Relaxor in KF-doped BaTi2O5 ceramic by spark plasma sintering, Appl. Phys. Lett. 92 (2008) 052902.

DOI: 10.1063/1.2841712

Google Scholar

[12] S. Luo, C. Wang, X. Zhou, Q. Shen, and L. Zhang, Fabrication and characterizations of Zn1-xCoxO bulk ceramics prepared by solid state reaction combined with spark plasma sintering, J. Mater. Sci. Mater. El. 23 (2012) 1477-84.

DOI: 10.1007/s10854-011-0614-4

Google Scholar

[13] X. Tang, W. Xie, H. Li, W. Zhao, Q. Zhang, and M. Niino, Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure, Appl. Phys. Lett. 90 (2007) 012102.

DOI: 10.1063/1.2425007

Google Scholar

[14] Q. Guo, and S. Luo, Improved thermoelectric efficiency in p-type ZnSb through Zn deficiency. Funct. Mater. Lett. 8 (2015) 1550028.

DOI: 10.1142/s1793604715500289

Google Scholar

[15] Q. Guo, Y. Yang, J. Li, Q. Shen, and L. Zhang, In situ synthesis and properties of Zr2Al3C4/ZrB2 composites, Mater. Des. 32 (2011) 4289-94.

Google Scholar

[16] Q. Guo, J. Li, Q. Shen, and L. Zhang, Preparation and characterization of ZrB2-SiC-Zr2Al4C5 composites by spark plasma sintering-reactive synthesis (SPS-RS) method, Mater. Sci. Eng. A 558 (2012) 186-92.

DOI: 10.1016/j.msea.2012.07.109

Google Scholar

[17] Q. Guo, S. Luo, J. Gan, J. Li, and L. Zhang, Effect of ball milled Zr/Al/ZrB2 composite powders on microstructure and toughening of ZrB2/SiC/Zr-Al-C composite ceramics by spark plasma sintering, Mater. Sci. Eng. A 644 (2015) 96-104.

DOI: 10.1016/j.msea.2015.07.010

Google Scholar

[18] X.F. Zhang, Q. Yang, and L.C. De Jonghe, Microstructure Development in Hot-Pressed Silicon Carbide: Effects of Aluminum, Boron, and Carbon Additives, Acta Mater. 51 (2003) 3849-60.

DOI: 10.1016/s1359-6454(03)00209-x

Google Scholar

[19] K. Sugiura, T. Iwata, H. Yoshida, S. Hashimoto, K. Fukuda, Syntheses, crystal structures and Si solubilities of new layered carbides Zr2Al4C5 and Zr3Al4C6, J. Solid. State. Chem. 181 (2008) 2864-68.

DOI: 10.1016/j.jssc.2008.07.017

Google Scholar

[20] L.F. He, Y.W. Bao, J.Y. Wang, M.S. Li, Y.C. Zhou, Mechanical and thermophysical properties of Zr–Al–Si–C ceramics, J. Am. Ceram. Soc. 92 (2009) 445-51.

DOI: 10.1111/j.1551-2916.2008.02879.x

Google Scholar