Real-Time Measurement of Ion Energies for Heavy Ions

Article Preview

Abstract:

A real-time position detection system is developed for measuring heavy ions with low fluence and energy of several hundred MeV, which are generated from an azimuthally varying field (AVF) cyclotron accelerator. We investigate the photoluminescence of α-Al2O3 single crystals implanted with Eu (Al2O3:Eu), which is used in the detection system. The Al2O3:Eu scintillators with a fluence of 3.0 × 1016 cm2 are annealed at 500–900°C. The annealing conditions required for the Al2O3:Eu scintillators to obtain the maximum luminescence are 0.5 h at 600°C. The scintillator is placed on the AVF cyclotron target stage under atmospheric pressure and is irradiated by 260-MeV Ne. An inverted confocal microscope with a ×10 objective lens is positioned behind the Al2O3:Eu scintillator, and the luminescent images during ion irradiation are obtained by a position-sensitive camera unit with a 512 × 512 pixel electron multiplying charge-coupled device. The images indicate that our online measurement system has a sufficient spatial resolution, since the luminous diameter induced by irradiation with 190 ions /s is almost the same as that of the microbeam.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-162

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Cholewa, B.E. Fischer, M. Heiß: Nucl. Instr. and Meth. B Vol. 210 (2003), p.296.

Google Scholar

[2] O. Veselov, W. Polak, R. Ugenskiene, K. Lebed, J. Lekki, Z. Stachura and J. Styczen: Radiat Prot Dosimetry Vol. 122 (2006), p.316.

DOI: 10.1093/rpd/ncl437

Google Scholar

[3] T. Funayama, S. Wada, Y. Yokota, K. Fukamoto, T. Sakashita, M. Taguchi, T. Kakizaki, N. Hamada, M. Suzuki, Y. Furusawa, H. Watanabe, K. Kiguchi and Y. Kobayashi: J. Radiat. Res. (Tokyo) Vol. 49 (2008), p.71.

DOI: 10.1269/jrr.07085

Google Scholar

[4] Y. Kobayashi, T. Funayama, S. Wada, M. Taguchi and H. Watanabe: Nucl. Instr. and Meth. B Vol. 210 (2003), p.308.

Google Scholar

[5] T. Satoh, M. Koka, W. Kada, A. Yokoyama and T. Kamiya: Nucl. Instr. and Meth. B Vol. 332 (2014), p.242.

Google Scholar

[6] A. Yokoyama, W. Kada, T. Satoh, M. Koka, S. Yamamoto, T. Kamiya and W. Yokota: Nucl. Instr. and Meth. B Vol. 332 (2014), p.334.

Google Scholar

[7] N. Can, P.D. Townsend, D.E. Hole and C.N. Afonso: Applied Physics Letters Vol. 65 (1994), p.1871.

Google Scholar

[8] K. Aono, M. Iwaki: Nucl. Instr. and Meth. B Vol. 141 (1998), p.518.

Google Scholar

[9] S. Onoda, T. Yamamoto, T. Ohshima, J. Isoya, T. Teraji and K. Watanabe: Transactions of the Materials Research Society of Japan Vol. 37 (2012), p.241.

DOI: 10.14723/tmrsj.37.241

Google Scholar

[10] K. Aono, H. Toida, K. Terashima and M. Iwaki: Nucl. Instr. and Meth. B Vol. 175 (2001), p.580.

Google Scholar

[11] T. Kamiya, T. Suda, R. Tanaka: Nucl. Instr. and Meth. B Vol. 118 (1996), p.447.

Google Scholar

[12] T. Kamiya, N. Utsunomiya, E. Minehara, R. Tanaka and I. Ohdomari: Nucl. Instr. and Meth. B Vol. 64 (1992), p.362.

Google Scholar

[13] M. Oikawa, T. Satoh, T. Sakai, N. Miyawaki, H. Kashiwagi, S. Kurashima, S. Okumura, M. Fukuda, W. Yokota and T. Kamiya: Nucl. Instr. and Meth. B Vol. 260 (2007), p.85.

Google Scholar

[14] Frank Czerwinski et al, ISBN 978-953-51-0768-2, (2012). p.121.

Google Scholar

[15] G. Bellocchi, G. Franzò, F. Iacona, S. Boninelli, M. Miritello, T. Cesca and F. Priolo: Opt. Express Vol. 20 (2012), p.5501.

DOI: 10.1364/oe.20.005501

Google Scholar

[16] E. Lima, M.E. Villafuerte-Castrejón, J. Saniger, V. Lara, J.E. Sánchez-Sánchez and L. Javier Álvarez: Advances in Materials Science and Engineering Vol. 2012 (2012), p.7.

DOI: 10.1155/2012/238075

Google Scholar