Synthesis and Characterization of Covalent Organic Polymer

Article Preview

Abstract:

Development of covalent organic polymer (COP) is a potential new class of adsorbent for gas separation due to their good hydrothermal stability, chemical tuning flexibility and low cost. COP-1 was prepared via one-step polycondensation of cyanuric chloride and piperazine under catalyst free and N2 atmosphere condition. The properties of COP-1 were characterized using several analytical methods such as Fourier Transform Infra-Red (FTIR), solid Nuclear Magnetic Resonance (s-NMR), Thermal gravimetric analysis (TGA) and N2 adsorption and desorption measurement. The C-N bond of COP-1 which has non-rigid framework was successfully linked in this study. It is found that COP-1 has low thermal degradation temperature i.e. 483 K. As compared to literature, lower surface area (75.5 m2/g) and slightly large pore size (8 nm) are noticed. The difference of physical properties of COP-1 synthesized between in this study and literature revealed the challenge of reproducibility for COP-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

270-274

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Kaur, J. T. Hupp, and S. T. Nguyen, Porous Organic Polymers in Catalysis: Opportunities and Challenges, ACS Catal., vol. 1, pp.819-835, (2011).

DOI: 10.1021/cs200131g

Google Scholar

[2] D. Yuan, W. Lu, D. Zhao, and H. -C. Zhou, Highly Stable Porous Polymer Networks with Exceptionally High Gas-Uptake Capacities, Adv. Mater., vol. 23, pp.3723-3725, (2011).

DOI: 10.1002/adma.201101759

Google Scholar

[3] S. -i. Noro, J. Mizutani, Y. Hijikata, R. Matsuda, H. Sato, S. Kitagawa, K. Sugimoto, Y. Inubushi, K. Kubo, and T. Nakamura, Porous coordination polymers with ubiquitous and biocompatible metals and a neutral bridging ligand, Nat Commun, vol. 6, (2015).

DOI: 10.1038/ncomms6851

Google Scholar

[4] Z. Xiang and D. Cao, Porous covalent-organic materials: synthesis, clean energy application and design, J. Mater. Chem. A, vol. 1, pp.2691-2718, (2013).

DOI: 10.1039/c2ta00063f

Google Scholar

[5] T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J. M. Simmons, S. Qiu, and G. Zhu, Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area, Angew Chem-Ger Edit, vol. 121, pp.9621-9624, (2009).

DOI: 10.1002/ange.200904637

Google Scholar

[6] H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. Ö. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim, and O. M. Yaghi, Ultrahigh Porosity in Metal-Organic Frameworks, Sci., vol. 329, pp.424-428, (2010).

DOI: 10.1126/science.1192160

Google Scholar

[7] Z. Xiang, X. Zhou, C. Zhou, S. Zhong, X. He, C. Qin, and D. Cao, Covalent-organic polymers for carbon dioxide capture, J. Mater. Chem., vol. 22, pp.22663-22669, (2012).

DOI: 10.1039/c2jm35446b

Google Scholar

[8] H. A. Patel, F. Karadas, A. Canlier, J. Park, E. Deniz, Y. Jung, M. Atilhan, and C. T. Yavuz, High capacity carbon dioxide adsorption by inexpensive covalent organic polymers, J. Mater. Chem., vol. 22, pp.8431-8437, (2012).

DOI: 10.1039/c2jm30761h

Google Scholar

[9] H. A. Patel, F. Karadas, J. Byun, J. Park, E. Deniz, A. Canlier, Y. Jung, M. Atilhan, and C. T. Yavuz, Highly Stable Nanoporous Sulfur-Bridged Covalent Organic Polymers for Carbon Dioxide Removal, Adv. Funct. Mater., vol. 23, pp.2270-2276, (2013).

DOI: 10.1002/adfm.201202442

Google Scholar

[10] H. A. Patel, S. Hyun Je, J. Park, D. P. Chen, Y. Jung, C. T. Yavuz, and A. Coskun, Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers, Nat Commun, vol. 4, p.1357, (2013).

DOI: 10.1038/ncomms2359

Google Scholar

[11] Y. Zhou, Z. Xiang, D. Cao, and C. -J. Liu, Covalent organic polymer supported palladium catalysts for CO oxidation, Chem. Commun., vol. 49, pp.5633-5635, (2013).

DOI: 10.1039/c3cc00287j

Google Scholar

[12] Z. Xiang and D. Cao, Synthesis of Luminescent Covalent–Organic Polymers for Detecting Nitroaromatic Explosives and Small Organic Molecules, Macromol. Rapid Commun., vol. 33, pp.1184-1190, (2012).

DOI: 10.1002/marc.201100865

Google Scholar

[13] C. Kotoulas and C. Kiparissides, A generalized population balance model for the prediction of particle size distribution in suspension polymerization reactors, Chem. Eng. Sci., vol. 61, pp.332-346, (2006).

DOI: 10.1016/j.ces.2005.07.013

Google Scholar

[14] F. Rouquerol, J. Rouquerol, and K. Sing, Chapter 13 - General Conclusions and Recommendations, in Adsorption by Powders and Porous Solids, F. Rouquerol, et al., Eds., ed London: Academic Press, pp.439-447, (1999).

DOI: 10.1016/b978-012598920-6/50014-2

Google Scholar