Metal Injection Moulding of Superelastic TiNi Parts

Article Preview

Abstract:

TiNi shape-memory properties are successfully used today for the fabrication of various technical devices. The limited machinability and high cost of TiNi encourage the use of near-net shape production techniques such as metal injection moulding. In this work TiNi alloys tensile test specimens are produced by metal injection moulding from pre-alloyed powders. A binder based on a mixture of polyethylene, paraffin wax and stearic acid is used. Parts with a density of about 96.6% of theoretical density are obtained. Scanning electron microscopy coupled with EDX measurements reveals a microstructure consisting of a TiNi matrix with small Ti4Ni2Ox and TiC inclusions. DSC and X-ray diffraction observations indicate the presence of additional Ni4Ti3 precipitates. The parts exhibit full superelasticity at room temperature even for strains of up to 4%, without the need for additional thermal post-treatments. Ultimate tensile strengths up to 980 MPa are obtained.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] K. Otsuka, T. Kakeshita, Science and technology of shape-memory alloys: New developments, MRS Bulletin (2002) 91-100.

DOI: 10.1557/mrs2002.43

Google Scholar

[2] K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys, Progress in Materials Science 50 (2005) 511-678.

DOI: 10.1016/j.pmatsci.2004.10.001

Google Scholar

[3] A. Smolders, D. Aslanidis, A. Serneels, S. Van den Bossche, W. Vandermeulen, Manufacturing of shape memory alloys by powder metallurgy, Proc. of the First European Conf. on Shape Memory and Superelastic Technologies (SMST-99), Antwerp, Belgium (1999).

Google Scholar

[4] M. Bram, A. Ahmad-Khanlou, A. Heckmann, B. Fuchs, H.P. Buchkremer, D. Stöver. Powder Metallurgical fabrication processes for NiTi shape memory alloy parts, Materials Science and Engineering A337 (2002) 254-263.

DOI: 10.1016/s0921-5093(02)00028-x

Google Scholar

[5] Ph. Imgrund, A. Rota, H. Schmidt. μ-MIM: Making the most of NiTi, in Metal Powder Report, May 2008, 21-24.

DOI: 10.1016/s0026-0657(08)70057-2

Google Scholar

[6] J. -E. Bidaux, A. Jochem, E. Carreño-Morelli, Powder injection moulding of NiTi shape memory alloys, Powder Injection Moulding International, vol. 2 N°1 (2008) 59-62.

DOI: 10.1179/0032589913z.000000000118

Google Scholar

[7] M. H. Ismail, R Goodall, H. A. Davies, I. Todd, Porous NiTi metal injection moulding/sintering of elemental powders: Effect of sintering temperature, Materials Letters 70 (2012) 142-145.

DOI: 10.1016/j.matlet.2011.12.008

Google Scholar

[8] G. Chen, P. Cao, G. Wen, N. Edmonds, Y. Li, Using an agar-based binder to produce porous NiTi alloys by metal injection moulding, Intermetallics 37 (2013) 92-99.

DOI: 10.1016/j.intermet.2013.02.006

Google Scholar

[9] L. Krone, E. Schüller, M. Bram, O. Hamed, H.P. Buchkremer, D. Stöver. Mechanical Behaviour of NiTi parts prepared by powder metallurgical methods, Materials Science and Engineering, Vol A378 (2004) 185-190.

DOI: 10.1016/j.msea.2003.10.345

Google Scholar

[10] L. Krone, J. Mentz, M. Bram, H. P. Buchkremer, D. Stöver, M. Wagner, G. Eggeler, D. Christ, S. Reese, D. Bogdanski, M. Köller, S. A. Esenwein, G. Muhr, O. Prymak, M. Epple. The potential of powder metallurgy for the fabrication of biomaterials on the basis of nickel-titanium: A case study with a staple showing shape memory behaviour, Advanced Engineering Materials, Vol 7, No 7, (2005).

DOI: 10.1002/adem.200500029

Google Scholar

[11] M. Bram, M. Bitzer, H.P. Buchkremer, D. Stöver. Reproducibility study of NiTi parts made by Metal Injection Molding, Journal of Materials Engineering and Performance (2012) DOI: 10. 1007/s11665-012-0264-6.

DOI: 10.1007/s11665-012-0264-6

Google Scholar

[12] E. Schüller, L. Krone, M. Bram, H. P. Buchkremer, D. Stöver, Journal of Materials Science, 40 (2005) pp.4231-4238.

Google Scholar

[13] J. Mentz, M. Bram, H.P. Buchkremer, D. Stoever, Improvement of mechanical properties of powder metallurgical NiTi reduction of impurity phases, Proc. of the International Conference on Shape memory and superelastic technologies, Pacific Grove, USA (2006).

DOI: 10.1002/adem.200500258

Google Scholar

[14] T. Saburi, Ti-Ni shape memory alloys, in Shape memory materials, Eds. K. Otsuka, C. M. Wayman, Cambridge University Press, Cambridge, 1998, 49-96.

Google Scholar

[15] Y. Shugo, S. Hanada, T. Honma, Effect of oxygen content on the martensite transformation and determination of defect structure in TiNi alloys, Bull. Res. Inst. Miner. Dress. Metall., 41 (1985) 23-34.

Google Scholar

[16] R. Pelton, J. DiCello, S. Miyazaki, Optimisation of processing and properties of medical grade Nitinol wire, Min. Invas. Ther. & Allied Technol., 9 (1) (2000) 107-118.

DOI: 10.3109/13645700009063057

Google Scholar

[17] K. Otsuka, Introduction to the R-phase transition, in Engineering aspects of shape-memory alloys, T. W. Duerig, K. N. Melton, D. Stöckel, C. M. Wayman (Eds. ), Butterworth-Heinemann Ltd, London, 1990, 36-45.

DOI: 10.1016/b978-0-7506-1009-4.50007-x

Google Scholar

[18] T. Goryczka, M. Morawiec, Structure studies of the R-phase using X-ray diffraction methods, Journal of Alloys and Compounds, 367 (2004) 137-141.

DOI: 10.1016/j.jallcom.2003.08.025

Google Scholar

[19] H. Hosoda, T. Inamura, Mechanical properties of shape memory alloys, in Shape memory alloys for biomedical applications, Eds. T. Yoneyma, S. Miyazaki, Woodhead Publishing Limited, Cambridge, 2009, 20-36.

DOI: 10.1533/9781845695248.1.20

Google Scholar