[1]
Liu, B.; Liua, Y.; Zhang, W.; Huang, J.S. Hot deformation behavior of TiAl alloys prepared by blended elemental powders, Intermetallics, 19 (2011) 154-159.
DOI: 10.1016/j.intermet.2010.08.024
Google Scholar
[2]
Wenbin, F.; Lianxi, H.; Wenxiong, H.; Erde, W.; Xiaoqing, L. Microstructure and properties of a TiAl alloy prepared by mechanical milling and subsequent reactive sintering, Materials Science and Engineering A, 403 (2005) 186–190.
DOI: 10.1016/j.msea.2005.04.049
Google Scholar
[3]
Appel, F.; Paul J.D.H.; Oehring, M. Gamma Titanium Aluminide Alloys – Science and Technology, Wiley-VCH, Weinheim, (2011).
DOI: 10.1002/9783527636204
Google Scholar
[4]
Kim, Y. -W. Intermetallic Alloys Based on Gamma Titanium Aluminide, Journal of Metals, 41 (1989) 24-30.
Google Scholar
[5]
Clemens, H.; Mayer S. Design, processing, microstructure, and applications of advanced intermetallic TiAl alloys. Advanced Engineering Materials, 15 (2013) 191-215.
DOI: 10.1002/adem.201200231
Google Scholar
[6]
Collings, E. W.; Welsch, G. Materials Properties Handbook: Titanium Alloys, ASM, (1994).
Google Scholar
[7]
Donachie, M.J. Titanium a technical guide, ASM, (1988).
Google Scholar
[8]
Boyer, R.R. An overview on the use of titanium in the aerospace industry. Materials Science and Engineering A, 213 (1996) 103-114.
Google Scholar
[9]
Thomas, M.; Bacos, M. Processing and Characterization of TiAl-based Alloys: Towards an Industrial Scale. Aerospace Lab Journal, 3 (2011) 1-11.
Google Scholar
[10]
Yamaguchi, M.; Inui, H., in: R. Darolia et al (Eds. ), TiAl Compounds for Structural Applications. Structural Intermetallics, The Minerals, Metals & Materials Society, (1993) 127-142.
Google Scholar
[11]
German, R. M. Sintering, Theory and practice, John Wiley & Sons, (1996).
Google Scholar
[12]
Froes, F.H.; Eylon, D. Powder metallurgy of titanium alloys- a review, Powder Metallurgy International, 17 (1985) 163-167.
DOI: 10.1520/stp28934s
Google Scholar
[13]
Moody, N.R.; Garrison, W.M.; Smugeresky J.E.; Costa, J.E. The role of inclusion and pore content on the fracture toughness of powder-processed blended elemental titanium alloys, Metallurgical Transactions A, 24 (1993) 161-174.
DOI: 10.1007/bf02669613
Google Scholar
[14]
Hagiwara, M.; Emura, S. Blended elemental P/M synthesis and property evaluation of Ti-1100 alloy Materials Science and Engineering A, 352 (2003) 85-92.
DOI: 10.1016/s0921-5093(02)00897-3
Google Scholar
[15]
Henriques, V.A.R.; Galvani, E. T.; Petroni, S.L.G.; Paula, M.S.M.; Lemos, T.G. Production of Ti–13Nb–13Zr alloy for surgical implants by powder metallurgy, Journal of Materials Science, 45 (2010) 5844–5850.
DOI: 10.1007/s10853-010-4660-8
Google Scholar
[16]
Lee-Sullivan, P. HIP processing of Ti-Al intermetallic using blended elemental powders, Journal of Materials Processing Technology, 38 (1993) 1-14.
DOI: 10.1016/0924-0136(93)90181-5
Google Scholar
[17]
Wang, G. -X.; Dahms, M. An Overview: TiAl-Based Alloys Prepared by Elemental Powder Metallurgy, Powder Metallurgy International, 24 (1992) 219-225.
Google Scholar
[18]
K. Shibue, Suppression of Pores for TiAl Intermetallic Compound Prepared by Reactive Sintering, Sumitomo Light Metal Technical Reports, 32 (1991) 95-101.
Google Scholar
[19]
Böhm, A.; Kieback, B. Investigation of swelling behavior of Ti-Al elemental powder mixtures during reaction sintering, Zeitschrift Fuer Metallkunde, 89(1998) 90-95.
Google Scholar
[20]
Dahms M., Leitner G., Poessnecker W., Schultrich S. Schmelzer F. Pore formation during reactive sintering of extruded titanium aluminum powder mixtures', Zeitschrift Fuer Metallkunde, 1993, 84, 351–357.
DOI: 10.1515/ijmr-1993-840513
Google Scholar
[21]
Chraponski, J; Szkliniarz, W.; Serek, B. Microstructure and chemical composition of phases in Ti-48Al-2Cr-2Nb intermetallic alloy. Materials Chemistry and Physics, 81 (2003) 438–442.
DOI: 10.1016/s0254-0584(03)00042-7
Google Scholar
[22]
Clemens H., Wallgram W., Kremmer S., Güther V., Otto A., Bartels A. Design of Novel β-Solidifying TiAl Alloys with Adjustable β/B2-Phase Fraction and Excellent Hot-Workability, Advanced Engeneering Materials, 10 (2008) 707-713.
DOI: 10.1002/adem.200800164
Google Scholar
[23]
Huang, Y, Wang, Y., Fan, H., Shen, J. A TiAl based alloy with excellent mechanical performance by gas atomization and spark plasma sintering, Intermetallics, 31 (2012) 202-207.
DOI: 10.1016/j.intermet.2012.07.006
Google Scholar
[24]
Hsiung, L.M., Nieh, T.G. Microstructures and properties of powder metallurgy TiAl alloys, Materials Science and Engineering A, 364 (2004) 1–10.
DOI: 10.1016/s0921-5093(02)00639-1
Google Scholar