A Phase Field Approach for Modeling Melting and Re-Solidification of Ti-6Al-4V during Selective Laser Melting

Article Preview

Abstract:

A Multi Phase Field model is proposed to describe the microstructure evolution induced by laser-material interaction in Selective Laser Melting (SLM). On the basis of the free enthalpy, the nucleation and growth processes occurring during the relevant phase transformations are explicitly taken into account. Within this contribution, the focus is laid on the SLM processing of the titanium alloy Ti-6Al-4V with special emphasis on the transition between β-titanium and melt. The results are discussed and compared to those of more conventional modelling approaches.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

241-250

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Shiomi, A. Yoshidome, F. Abe, K. Osakada, Finite element analysis of melting and solidifying processes in laser rapid prototyping of metallic powders, Int. J. Mach. Tool Manu. 39 (1999) 237- 252.

DOI: 10.1016/s0890-6955(98)00036-4

Google Scholar

[2] C. Qiu, C. Panwisawas, M. Ward, H. C. Basoalto, J. W. Brooks and M. M. Attallah, On the role of melt flow into the surface structure and porosity development during selective laser melting, Acta Mater. 96 (2015) 72-79.

DOI: 10.1016/j.actamat.2015.06.004

Google Scholar

[3] I. Roberts, C. Wang, R. Esterlein, M. Stanford, D. Mynors, A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing, Int. J. Mach. Tool Manu. 19 (2009) 916-923.

DOI: 10.1016/j.ijmachtools.2009.07.004

Google Scholar

[4] P. Vora, K. Mumtaz, I. Todd, N. Hopkinson, AlSi12 in-situ alloy formation and residual stress reduction using anchorless selective laser melting, Additive Manu. 7 (2015) 12-19.

DOI: 10.1016/j.addma.2015.06.003

Google Scholar

[5] M. v. Allmen, A. Blatter, Laser-Beam Interactions with Materials: Physical Principles and Applications, second ed., Springer Science & Business Media, (2013).

Google Scholar

[6] M. Geiger, K. -H. Leitz, H. Koch, A. Otto, A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets, Prod. Engineer. 3 (2009) 127- 136.

DOI: 10.1007/s11740-008-0148-7

Google Scholar

[7] F. -J. Gürtler, M. Karg, K. -H. Leitz, M. Schmidt, Simulation of laser beam melting of steel powders using the three-dimensional Volume of Fluid Method, Phys. Procedia 41 (2013) 881-886.

DOI: 10.1016/j.phpro.2013.03.162

Google Scholar

[8] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39 (1979) 201-225.

DOI: 10.1016/0021-9991(81)90145-5

Google Scholar

[9] J.W. Cahn, J.E., Hilliard, Free energy of a nonuniform system. I. Interfacial Free Energy, J. Chem. Phys. 28 (1958) 258-267.

DOI: 10.1063/1.1744102

Google Scholar

[10] P. -F. Paradis, T. Ishikawa, S. Yoda, Non-Contact measurements of surface tension and viscosity of niobium, zirconium, and titanium using an electrostatic levitation furnace, Int. J. Thermophys. 23 (2002) 825-842.

Google Scholar

[11] X. Bai, M. Li, Nature and extent of melting in superheated solids: Liquid-solid coexistence model, Phys. Rev. B 72 (2005) 052108.

DOI: 10.1103/physrevb.72.052108

Google Scholar

[12] D.P. Woodruff, The Solid-Liquid Interface, first ed. Cambridge University Press, (1973).

Google Scholar

[13] I. Katzarov, S. Malinov, W. Sha, Finite element modeling of the morphology of β to α phase transformation in Ti-6Al-4V alloy, Metall. Mater. Trans. A 33 (2002) 1027-1040.

DOI: 10.1007/s11661-002-0204-4

Google Scholar

[14] W. Kurz, D.J. Fischer, Fundamentals of Solidification, third ed., Trans. Tech. Publications, (1992).

Google Scholar

[15] L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, J. -P. Kruth, A study of the microstructural evolution during selective laser melting of Ti-6Al-4V, Acta Mater. 58 (2010) 3303-3312.

DOI: 10.1016/j.actamat.2010.02.004

Google Scholar

[16] I. Steinbach, Phase-field models in materials science, Model. Simul. Mater. Sci. Eng. 17 (2009) 073001.

DOI: 10.1088/0965-0393/17/7/073001

Google Scholar

[17] U. Grafe, B. Böttger, J. Tiaden, S.G. Fries, Coupling of multicomponent thermodynamic databases to a phase field model: Application to solidification and solid state transformations of superalloys, Scr. Mater. 42 (2000) 1179-1186.

DOI: 10.1016/s1359-6462(00)00355-9

Google Scholar

[18] J.J. Hoyt, M. Asta, A. Karma, Atomistic and continuum modeling of dendritic solidification, Mater. Sci. Eng. R-Rep. 41 (2003) 121-163.

Google Scholar

[19] E.J. Lavernia, T.S. Srivatsan, The rapid solidification processing of materials: Science, principles, technology, advances, and applications, J. Mater. Sci. 45 (2009) 287-325.

DOI: 10.1007/s10853-009-3995-5

Google Scholar

[20] Sente Software Ltd. JMatPro 8 Demo: http: /www. sentesoftware. co. uk, U.K. 2012, (Accessed 2 Jul. 2015).

Google Scholar

[21] Thermo-Calc Software: TTTI2 Thermotech Ti-based Alloys database version 2, (Accessed 9 Mar 1998).

Google Scholar

[22] M. Simonelli, Y. Tse, C. Tuck, On the texture formation of selective laser melted Ti-6Al-4V, Metall. and Mater. Trans. A 45 (2014) 2863-2872.

DOI: 10.1007/s11661-014-2218-0

Google Scholar

[23] N. Saunders, A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, first ed., Pergamon Materials Series, Elsevier Science, (1998).

DOI: 10.1016/s1470-1804(13)60012-7

Google Scholar

[24] B. van Hooreweder, D. Moens, R. Boonen, J. -P. Kruth, P. Sas, Analysis of fracture toughness and crack propagation of Ti-6Al-4V produced by selective laser melting, Adv. Eng. Mater. 14 (2012) 92-97.

DOI: 10.1002/adem.201100233

Google Scholar