Mechanical Behaviour of Gas Nitrided Ti6Al4V Bars Produced by Selective Laser Melting

Article Preview

Abstract:

Gas atomized Ti-6Al-4V (Ti64) alloy powder was used to prepare distinct designed geometries with different properties by selective laser melting (SLM). Several heat treatments were investigated to find suitable processing parameters to strengthen (specially to harden) these parts for different applications. The results showed significant differences between tabulated results for heat treated billet Ti64 and SLM produced Ti64 parts, while certain mechanical properties of SLM Ti64 parts could be improved by different heat treatments using different processing parameters. Most heat treatments performed followed the trends of a reduction in tensile strength while improving ductility compared with untreated SLM Ti64 parts.Gas nitriding [GN] (diffusion-based thermo-chemical treatment) has been combined with a selected heat treatment for interstitial hardening. Heat treatment was performed below β-transus temperature using minimum flow of nitrogen gas with a controlled low pressure. The surface of the SLM produced Ti64 parts after gas nitriding showed TiN and Ti2N phases (“compound layer”, XRD analysis) and α (N) – Ti diffusion zones as well as high values of micro-hardness as compared to untreated SLM produced Ti64 parts. The microhardness profiles on cross section of the gas nitrided SLM produced samples gave information about the i) microhardness behaviour of the material, and ii) thickness of the nitrided layer, which was investigated using energy dispersive spectroscopy (EDS) and x-ray elemental analysis. Tensile properties of the gas nitrided Ti64 bars produced by SLM under different conditions were also reported.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

225-234

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Tokaji, H. Shibata, Journal of Materials Engineering and Performance, 8 (1999) 159-167.

Google Scholar

[2] M. Erola, Thin Solid Films, 156 (1988) 117-125.

Google Scholar

[3] K.T. Rie, T. Stucky, R.A. Silva, K. Bordji, D. Mainard, 74–75, Part 2 (1995) 973-980.

Google Scholar

[4] J.P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, CIRP Annals - Manufacturing Technology, 56 (2007) 730-759.

DOI: 10.1016/j.cirp.2007.10.004

Google Scholar

[5] J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers, Journal of Materials Processing Technology, 149 (2004) 616-622.

DOI: 10.1016/j.jmatprotec.2003.11.051

Google Scholar

[6] D. Gu, G. Meng, C. Li, W. Meiners, R. Poprawe, Scripta Materialia, 67 (2012) 185-188.

DOI: 10.1016/j.scriptamat.2012.04.013

Google Scholar

[7] D. Gu, Y. -C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach, R. Poprawe, Acta Materialia, 60 (2012) 3849-3860.

DOI: 10.1016/j.actamat.2012.04.006

Google Scholar

[8] L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, J. -P. Kruth, Acta Materialia, 58 (2010) 3303-3312.

DOI: 10.1016/j.actamat.2010.02.004

Google Scholar

[9] B. Song, S. Dong, B. Zhang, H. Liao, C. Coddet, Materials & Design, 35 (2012) 120-125.

Google Scholar

[10] L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Höges, K. Wissenbach, Rapid Prototyping Journal, 16 (2010) 450-459.

DOI: 10.1108/13552541011083371

Google Scholar

[11] K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, F. Medina, Acta Materialia, 60 (2012) 2229-2239.

DOI: 10.1016/j.actamat.2011.12.032

Google Scholar

[12] R. Li, Y. Shi, Z. Wang, L. Wang, W. Jiang, Applied Surface Science, 256 (2010) 4350-4356.

Google Scholar

[13] K. Guan, Z. Wang, M. Gao, X. Li, X. Zeng, Materials & Design, 50 (2013) 581-586.

Google Scholar

[14] B. Song, S. Dong, C. Coddet, Surface and Coatings Technology, 206 (2012) 4704-4709.

Google Scholar

[15] D. Dai, D. Gu, Materials & Design, 55 (2014) 482-491.

Google Scholar

[16] P. Fischer, V. Romano, E. Boillat, R. Glardon, Acta Materialia, 51 (2003) 1651-1662.

Google Scholar

[17] S. Das, M. Wohlert, J.J. Beaman, D.L. Bourell, Materials & Design, 20 (1999) 115-121.

Google Scholar

[18] S. Kumar, J.P. Kruth, Materials & Design, 31 (2010) 850-856.

Google Scholar

[19] F. Verhaeghe, T. Craeghs, J. Heulens, L. Pandelaers, Acta Materialia, 57 (2009) 6006-6012.

DOI: 10.1016/j.actamat.2009.08.027

Google Scholar

[20] L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, R.B. Wicker, Journal of Materials Science & Technology, 28 (2012) 1-14.

DOI: 10.1016/s1005-0302(12)60016-4

Google Scholar

[21] E. Koyuncu, F. Kahraman, O. Karadeniz, Archives of Materials Science, 29 (2008) 50-60.

Google Scholar

[22] A. Fernandes, A. Vieira, J. Rivière, Surface and Coatings Technology, 200 (2006) 6218-6224.

Google Scholar

[23] J. Song, K. Kim, Journal of Korean Institute of Metals and Materials, 40 (2002) 285-290.

Google Scholar

[24] H. Michel, D. Ablitzer, A. Ricard, Surface and Coatings Technology, 72 (1995) 103-111.

Google Scholar

[25] L. Xue, M. Islam, M. Bibby, W. Wallace, Advanced Performance Materials, 4 (1997) 389-408.

Google Scholar

[26] S. Mridha, T.N. Baker, Journal of Materials Processing Technology, 77 (1998) 115-121.

Google Scholar

[27] M. Nakai, M. Niinomi, N. Ohtsu, Materials Science and Engineering: A, 486 (2008) 193-201.

Google Scholar

[28] D.P. Shashkov, A.V. Vinogradov, V.N. Polohov, Metals, 6 (1981) 172.

Google Scholar

[29] G.G. Maksimovich, V.N. Fedirko, Metal Science and Heat Treatment, 28 (1986) 393-397.

Google Scholar

[30] V.M. Fedirko, I.M. Pogrelyuk, Academy of Sciences of Ukrainian SSR, 26 (1991) 559-562.

Google Scholar

[31] I. Pohrelyuk, V. Fedirko, Nitriding, in: Titanium Alloys - Towards Achieving Enhanced Properties for Diversified Applications, 2012, pp.141-170.

DOI: 10.5772/36546

Google Scholar

[32] A. Zhecheva, S. Malinov, W. Sha, Surface and Coatings Technology, 200 (2005) 2192-2207.

Google Scholar

[33] J.L. Murray, Phase diagrams of binary titanium alloys, in, ASM International, Metals Park, Ohio, 1987, p.176.

Google Scholar

[34] S. Malinov, A. Zhecheva, W. Sha, Modeling the nitriding in titanium alloys, in: O. Popoola, N.B. Dahotre, J.O. Iroh, D.H. Herring, S. Midea, H. Kopech (Eds. ) Surface Engineering Coatings and Heat treatments (1st international Surface Engineering Congress and the 13th IFHTSE Congress), ASM International, Materials Park, OH, 2002, pp.344-352.

DOI: 10.1016/j.surfcoat.2006.04.019

Google Scholar

[35] M.J. Donachie, Heat Treating, in: Titanium: A Technical Guide, ASM International, Materials Park, OH, 2000, pp.55-63.

Google Scholar

[36] B. Vrancken, L. Thijs, J. -P. Kruth, J. Van Humbeeck, Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties, Journal of Alloys and Compounds, 541 (2012) 177-185.

DOI: 10.1016/j.jallcom.2012.07.022

Google Scholar

[37] T. Vilaro, C. Colin, J.D. Bartout, As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting, Metallurgical and Materials Transactions A, 42 (2011) 3190-3199.

DOI: 10.1007/s11661-011-0731-y

Google Scholar