Processing and Characterization of Ti-6Al-4V Samples Manufactured by Selective Laser Melting

Article Preview

Abstract:

Titanium and its alloys are well known as one of the best in-vitro and in-vivo bone replacement metallic biomaterial due to its excellent balance between biomechanical and biofunctional properties. The selective laser melting (SLM) method has a lower cost and shorter manufacturing time than the conventional routes used in the fabrication of titanium alloys. In this work, Ti6Al4V sheets were manufactured by SLM (LM samples) and subsequently annealed for stress relief at 750 oC for 10 min (LM-A samples). SEM, XRD and contact profilometry measurements were carried out to characterize the elemental composition, phases and surface morphology of different samples. A micro-tribo-mechanical evaluation was also performed by micro-indentation and scratch tests. The resulting surface was rough (Ra = 9.1 ± 0.5 μm) for all samples, showing protuberances with spherical morphology. For annealed samples, an oxide layer composed of rutile and Al2O3 was observed that increased the micro-hardness of the surface in LM-A sheets. However, after removing this oxide layer, the micro-hardness of the LM-A sheets was reduced when compared to LM samples as a result of the stress relief. A direct relationship between Vickers micro-hardness and scratch resistance was always observed. Therefore, LM-A sheets showed higher scratch resistance at low loads (oxidized surface effect) than LM samples, but lower resistance at high loads (bulk effect).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

260-268

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. O. Ritchie, in: ASM Intl. Materials and Processes for Medical Devices Conference, St., Paul, Minnesota, (2004).

Google Scholar

[2] E. W. Collins, The physical Metallurgy of Titanium Alloys, in: ASM Metal Processing, Ohio, (1984).

Google Scholar

[3] J. Currey, Cortical bone, in: Handbook of Biomaterial Properties, J. Black and G. Hastings (Ed. ), London: Springer – Verlag, 1998, p.629.

Google Scholar

[4] L. L. Hench, J. R. Jones, Biomaterials, Artificial Organs and Tissue Engineering, in: Cambridge, England: Woodhead Pub. Ltd, (2005).

Google Scholar

[5] H. Zhang, M. Ahmad, G. Gronowicz, Effects of transforming growth factor-beta 1 (TGF-beta1) on in vitro mineralization of human osteoblasts on implant materials, Biomaterials. 24 (2003) 2013-(2020).

DOI: 10.1016/s0142-9612(02)00616-6

Google Scholar

[6] E. Eisenbarth, J. Meyle, W. Nachtigall, J. Breme, Influence of the surface structure of titanium materials on the adhesion of fibroblasts, Biomaterials. 17 (1996) 1399-1403.

DOI: 10.1016/0142-9612(96)87281-4

Google Scholar

[7] C. Aparicio, Tratamientos de superficie sobre titanio comercialmente puro para la mejora de la osteointegración de los implantes dentales, Universidad Politécnica de Barcelona, (2005).

DOI: 10.3989/revmetalm.1998.v34.iextra.735

Google Scholar

[8] J. Lausmaa, Mechanical, thermal, chemical and electrochemical surface tretament of titanium, In: Titanium in Medicine, Brunette, D.M., Tengvall, P., Textor, M. and Thomsen, P., (Ed. ), 231-266, Springer-Verlag, Berlin, (2001).

DOI: 10.1007/978-3-642-56486-4_8

Google Scholar

[9] J. Pavón, P. Velásquez, S. Velásquez, in: 22nd European Conference on Biomaterials, 07-11th September, 2009, Lausanne, CH.

Google Scholar

[10] X, Zhu, J. Chen, L. Scheideler, R. Reich, J. Geis-Gerstorfer, Effects of topography and composition of titanium surface oxides on osteoblast responses, Biomaterials. 25 (2004) 4087-4103.

DOI: 10.1016/j.biomaterials.2003.11.011

Google Scholar

[11] L. L. Hench, S. Best, Ceramics, Glasses and Glass- Ceramics, in: P.D. Ratner, A.S. Hoffman, F.J. Schoen, J. E. Lemons (Eds. ), Biomaterials Science: An Introduction to Materials in Medicine, Elsevier Academic Press, California, 2004. p.154.

Google Scholar

[12] T. Kokubo, F. Miyaji, H. M. Kim, T. Nakamura, Spontaneous formation of bonelike apatite layer on chemically treated titanium metals, Journal of the American Ceramic Society, 79 (1996) 1127-1129.

DOI: 10.1111/j.1151-2916.1996.tb08561.x

Google Scholar

[13] A. Abarrategui, Estudio del quitosano como biomaterial portador de rhBMP-2: desarrollo, caracterización y aplicabilidad en regeneración de tejido óseo, Tesis Doctoral, Universidad Complutense de Madrid, (2008).

DOI: 10.35537/10915/2769

Google Scholar

[14] B. Ziberi, F. Frost, Th. Höche, B. Rauschenbach, Ripple pattern formation on silicon surfaces by low-energy ion-beam erosion: Experiment and theory, Physical Review B, 72 (2005) 235-310.

DOI: 10.1103/physrevb.72.235310

Google Scholar

[15] Y. Torres, S. Lascano, J. Bris, J.J. Pavón, J.A. Rodríguez, Development of porous titanium for biomedical applications: a comparison between loose sintering and space holder techniques, Materials Science and Engineering C, 37 (2014) 148–155.

DOI: 10.1016/j.msec.2013.11.036

Google Scholar

[16] L. Byounggab, L. Taekyung, L. Yongmoon, J.L. Dong, J. Jiwon, Y. Junhan, H.O. Sang, S.K. Hyoung, S.L. Chong, Space-holder effect on designing pore structure and determining mechanical properties in porous titanium, Materials and Design, 57 (2014).

Google Scholar

[17] D.S. Li, Y.P. Zhang, X. Ma, X.P. Zhang, Space-holder engineered porous NiTi shape memory alloys with improved pore characteristics and mechanical properties, Journal of Alloys and Compounds, 474 (2009) L1-L5.

DOI: 10.1016/j.jallcom.2008.06.043

Google Scholar

[18] Y. Torres, J.A. Rodriguez, S. Arias, M. Echeverry, S. Robledo, V. Amigo, J.J. Pavon, Processing, characterization and biological testing of porous titanium obtained by space-holder technique, Journal of Materials Science, 47 (2012) 6565-6576.

DOI: 10.1007/s10853-012-6586-9

Google Scholar

[19] Y. Torres, J.J. Pavon, J.A. Rodriguez, Processing and characterization of porous titanium for implants by using NaCl as space holder, Journal of Materials Processing Technology, 212 (2012) 1061-1069.

DOI: 10.1016/j.jmatprotec.2011.12.015

Google Scholar

[20] B. Vamsi Krishna, W. Xue, S. Bose, A. Bandyopadhyay, Functionally graded Co–Cr–Mo coating on Ti–6Al–4V alloy structures, Acta Biomaterialia, 4 (2008) 697-706.

DOI: 10.1016/j.actbio.2007.10.005

Google Scholar

[21] T. Traini, C. Mangano, R.L. Sammons, F. Mangano, A. Macchi, A. Piattelli, Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants, Dental Materials, 24 (2008).

DOI: 10.1016/j.dental.2008.03.029

Google Scholar

[22] B. Vrancken, L. Thijs, J.P. Kruth, J.V. Humbeeck, Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties, Journal of Alloys and Compounds, 541 (2012) 177–185.

DOI: 10.1016/j.jallcom.2012.07.022

Google Scholar

[23] B. Vrancken, L. Thijs, J. -P. Kruth, J. Van Humbeeck, Microstructure and mechanical properties of a novel β titanium metallic composite by Selective Laser Melting, Acta Materialia, 68 (2014) 150-158.

DOI: 10.1016/j.actamat.2014.01.018

Google Scholar

[24] B. Otsuki, M. Takemoto, S. Fujibayashi, M. Neo, T. Kokubo, T. Nakamura, Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants, Biomaterials, 27 (2006).

DOI: 10.1016/j.biomaterials.2006.08.013

Google Scholar

[25] M. Takemoto, S. Fujibayashi, M. Neo, K. So, N. Akiyama, T. Matsushita, T. Kokubo, T. Nakamura, A porous bioactive titanium implant for spinal interbody fusion: an experimental study using a canine model, J Neurosurgery: Spine, 7 (2007) 435-443.

DOI: 10.3171/spi-07/10/435

Google Scholar

[26] ASTM E384-05a (2005) Standard Test Method for Microindentation Hardness of Materials, West Conshohocken, PA.

Google Scholar

[27] ASTM C1624-05(2015), Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing, (2015) ASTM International.

DOI: 10.1520/c1624-05

Google Scholar

[28] D. Velten, V. Biehl, F. Aubertin, B. Valeske, W. Possart, J. Breme, Preparation of TiO2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization, Journal of Biomedical Materials Research, 59 (2002).

DOI: 10.1002/jbm.1212

Google Scholar