Thermohydrogen Processing of 3D Screen Printed Titanium Parts

Article Preview

Abstract:

The present study addresses the need for grain refinement in free sintered titanium alloys produced by 3D screen printing. Thermohydrogen processing (THP) was used for temporary alloying Ti-6Al-4V with hydrogen to refine its microstructure. The impact on microstructure was investigated by a parameter study with varying temperatures, exposure times and hydrogen partial pressures. Heat treated specimens were examined by optical microscopy, XRD and thermal analysis. The influence of the refined microstructure on the mechanical properties was evaluated by tensile and microhardness testing. Ultrafine grained microstructures with ultimate tensile strengths of up to more than 1000 MPa could be produced.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

251-259

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U.M. Attia, J.R. Alcock, A Review of Micro-Powder Injection Moulding as a Microfabrication Technique, J. Micromech. Microeng. 21 (4) (2011).

DOI: 10.1088/0960-1317/21/4/043001

Google Scholar

[2] D. Erath, A. Filipovic, M. Retzlaff, Advanced screen printing technique for high definition front side metallization of crystalline silicon solar cells, Solar Energy Materials & Solar Cells 94 (2010), 57-61.

DOI: 10.1016/j.solmat.2009.05.018

Google Scholar

[3] S. Ito, P. Chen, P. Comte, Fabrication of Screen-Printing Pastes From TiO2 Powders for Dye-Sensitised Solar Cells, Prog. Photovolt: Res. Appl. 15 (2007), 603-612.

DOI: 10.1002/pip.768

Google Scholar

[4] O. M. Ferri, T. Ebel and R. Bormann, The Influence of a Small Boron Addition on the Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Metal Injection Moulding, Advanced Engineering Materials 13 (5) (2011) 436-447.

DOI: 10.1002/adem.201000280

Google Scholar

[5] T. Ebel, O. Milagres Ferri, et al., Metal Injection Moulding of Titanium and Titanium-Alluminides, Key Eng. Mater. 520 (2012) 153-160.

DOI: 10.4028/www.scientific.net/kem.520.153

Google Scholar

[6] J. H. Luan, Z. B. Jiao et al., Journal of Alloys and Compounds 602 (2014) 235-240.

Google Scholar

[7] T. Ebel, Advances in the Metal Injection Moulding of Titanium at Euro PM2014, PIM International 9 (1) (2015) 51-61.

Google Scholar

[8] Y. F. Yang, S. D. Luo et al., Impurity Scavenging, Microstructural Refinement and Mechanical Properties of Powder Metallurgy Titanium and Titanium Alloys by a small addition of Cerium Silicide, Mater. Sci. Eng. A 573 (2013) 166-174.

DOI: 10.1016/j.msea.2013.02.042

Google Scholar

[9] B. Poorganji, A. Kazahari et al., Effect of Yttrium Addition on Grain Growth of α, β and α+β Titanium Alloys, IOP Publishing, Journal of Physics: Conference Series 240 (2010).

DOI: 10.1088/1742-6596/240/1/012170

Google Scholar

[10] V. de Castro, T. Leguey et al., Microstructural and Tensile Properties of Y2O3-dispersed Titanium produced by Arc Melting, Mater. Sci. Eng. A 422 (2006) 189-197.

DOI: 10.1016/j.msea.2006.02.027

Google Scholar

[11] R. M. German, Progress in Titanium Metal Powder Injection Moulding, Materials 6 (2013) 3641-3662.

DOI: 10.3390/ma6083641

Google Scholar

[12] J. J. Qazi, O. N. Senkov, et al., Kinetics of Martensite Decomposition in Ti-6Al-4V-xH Alloys, Mater. Sci. Eng. A 359 (2003) 137-149.

DOI: 10.1016/s0921-5093(03)00350-2

Google Scholar

[13] J. D. Paramore, Z. Z. Fang et al., A Powder Metallurgy Method for Manufacturing Ti-6Al-4V with Wrought-like Microstructures and Mechanical Properties via Hydrogen Sintering and Phase Transformation (HSPT), Scripta Mater. 107 (2015) 103-106.

DOI: 10.1016/j.scriptamat.2015.05.032

Google Scholar

[14] D. H. Kohn, P. Ducheyne, Microstructural Refinement of β-sintered and Ti-6Al-4V Porous-coated by Temporary Alloying with Hydrogen, J. Mater. Sci. 26 (1991) 534-544.

DOI: 10.1007/bf00576555

Google Scholar

[15] C. -C. Shen,C. -M. Wang, Effect of Hydrogen Loading and Type of Titanium Hydride on Grain Refinement and Mechanical Properties of Ti-6Al-4V, J. Alloys Compd. 601 (2014) 274-279.

DOI: 10.1016/j.jallcom.2014.02.171

Google Scholar

[16] D. Eliezer, N. Eliaz et al., Positive Effects of Hydrogen in Metals, Mater. Sci. Eng. A 280 (2000) 220-224.

Google Scholar

[17] Z. Z. Fang, P. Sun, Hydrogen Sintering of Titanium to Produce High Density Fine Grain Titanium Alloys, Adv. Eng. Mater. 14 (2012) 383-397.

DOI: 10.1002/adem.201100269

Google Scholar

[18] P. Sun, Z. Z. Fang et al., An Experimental Study of the (Ti-6Al-4V)-xH Phase Diagram Using In Situ Synchrotron XRD and TGA/DSC Techniques, Acta Mater. 84 (2014) 29-41.

DOI: 10.1016/j.actamat.2014.10.045

Google Scholar

[19] J. I. Qazi, J. Rahim et al., Phase Transformations in the Ti–6Al–4V–H System, Journal of Metals, 54 (2002) 68–71.

DOI: 10.1007/bf02701081

Google Scholar

[20] M. Peters, C. Leyens, Titan und Titanlegierungen, Wiley-VCH, Weinheim, (2002).

Google Scholar

[21] E. Baril, L.P. Lefebvre and Y. Thomas, Interstitial Elements in Titanium Powder Metallurgy: Sources and Control, Powd. Metall. 54 (2011) 183-187.

DOI: 10.1179/174329011x13045076771759

Google Scholar

[22] Standard Specification for Metal Injection Molded Titanium-6Aluminum-4Vanadium Components for Surgical Implant Applications, Annual Book of ASTM Standards Standard F2885-11 (2011).

DOI: 10.1520/f2885-11

Google Scholar