[1]
E. H. Kraft, Summary of emerging titanium cost reduction technologies, US Department of Energy and Oak Ridge National Laboratory Subcontract 4000023694, (2004).
Google Scholar
[2]
F. H. Froes, Titanium Powder Metallurgy: A Review – Part 1, Adv. Mater. Processes 170 (September 2012) 16 – 21.
Google Scholar
[3]
G. M. Delphine Cantin, N. A. Stone, D. Alexander, M. A. Gibson, D. Ritchie, R. Wilson, M. Yousuff, R. Rajakumar and K. Rogers, Production of Ti-6Al-4V by direct rolling of blended elemental powder, Mater. Sci. Forum 654 – 655 (2010) 807 – 810.
DOI: 10.4028/www.scientific.net/msf.654-656.807
Google Scholar
[4]
B. Thomas, F. Derguti and M. Jackson, Continuous extrusion of titanium particulates, Proceedings of the 13th World Conference on Titanium, San Diego, USA, 16th-20th August (2015).
DOI: 10.1002/9781119296126.ch16
Google Scholar
[5]
D. Whittaker and F. H. Froes, Future prospects for titanium powder metallurgy markets, in: M. Qian and F. H. Froes (Eds. ), Titanium Powder Metallurgy – Science, Technology and Applications, Butterworth-Heinemann, Waltham, Massachusetts, 2015, p.579.
DOI: 10.1016/b978-0-12-800054-0.00030-7
Google Scholar
[6]
Information on http: /materialstoday. com/additive-manufacturing/news/titanium-sales-in-am-could-exceed-us300-million.
Google Scholar
[7]
F. H. Froes, Titanium Powder Metallurgy: A Review – Part 2, Adv. Mater. Processes 170 (October 2012) 26 – 29.
Google Scholar
[8]
Y. H. Moll and C. F. Yolton, Production of titanium powder, in: P. W. Lee, Y. Trudel, R. Iacocca, R. M. German, B. L. Ferguson, W. B. Eisen, K. Moyer, D. Madan and H. Sanderow (Eds. ), ASM Handbook, Volume 7: Powder Metal Technologies and Applications, ASM International, Materials Park, Ohio, 1998, p.160.
Google Scholar
[9]
O. Neikov, Non-ferrous powder production: Manufacturing methods and properties of copper, aluminium, titanium and nickel powders, Powder Metallurgy Review 3 (Summer 2014) 65 – 87.
Google Scholar
[10]
C. McCracken, Production of fine titanium powders via the hydride – dehydride (HDH) process, Powder Injection Moulding International 2 (June 2008) 1 – 3.
Google Scholar
[11]
J. D. Paramore, Z. Z. Fang, P. Sun, M. Koopman, K. S. Ravi Chandran and M. Dunstan, A powder metallurgy method for manufacturing Ti-6Al-4V with wrought-like microstructures and mechanical properties via hydrogen sintering and phase transformation (HSPT), Scripta Mater. 107 (2015).
DOI: 10.1016/j.scriptamat.2015.05.032
Google Scholar
[12]
D. S. van Vuuren, S. Oosthuizen and M. D. Heydenrych, Titanium production via metallothermic reduction of TiCl4 in molten salt: problems and products, J. S. Afr. Inst. Min. Metall. 111 (2011) 141 – 148.
Google Scholar
[13]
Z. Z. Fang, S. Middlemas, J. Guo and P. Fan, A new, energy-efficient chemical pathway for extracting Ti metal from Ti minerals, J. Am. Chem. Soc. 135 (2013) 18248 – 18251.
DOI: 10.1021/ja408118x
Google Scholar
[14]
H. Zheng, H. Ito and T. H. Okabe, Production of titanium powder by the calciothermic reduction of titanium concentrates or ore using the preform reduction process, Mater. Trans., JIM 48 (2007) 2244 – 2251.
DOI: 10.2320/matertrans.mer2007115
Google Scholar
[15]
D. S. van Vuuren, Direct Titanium Powder Production by Metallothermic Processes, in: M. Qian and F. H. Froes (Eds. ), Titanium Powder Metallurgy – Science, Technology and Applications, Butterworth-Heinemann, Waltham, Massachusetts, 2015, p.69.
DOI: 10.1016/b978-0-12-800054-0.00005-8
Google Scholar
[16]
D. S. van Vuuren, A critical evaluation of processes to produce primary titanium, J. S. Afr. Inst. Min. Metall. 109 (2009) 455 – 461.
Google Scholar
[17]
G. Z. Chen, D. J. Fray and T. W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature 407 (2002) 361 – 364.
DOI: 10.1038/35030069
Google Scholar
[18]
R. O. Suzuki, K. Teranuma and K. Ono, Calciothermic reduction of titanium dioxide and in-situ electrolysis in molten CaCl2, Metall. Mater. Trans B 34B (2003) 287 – 295.
DOI: 10.1007/s11663-003-0074-1
Google Scholar
[19]
A. M. Martinez, K. S. Osen, E. Skybakmoen, O. S. Klos, G. M. Haarberg and K. Dring, A new method for low-cost titanium production. Key. Eng. Mater. 436 (2010) 41 – 53.
DOI: 10.4028/www.scientific.net/kem.436.41
Google Scholar
[20]
J. C. Withers, Production of Titanium Powder by an Electrolytic Method and Compaction of the Powder, in: M. Qian and F. H. Froes (Eds. ), Titanium Powder Metallurgy – Science, Technology and Applications, Butterworth-Heinemann, Waltham, Massachusetts, 2015, p.33.
DOI: 10.1016/b978-0-12-800054-0.00003-4
Google Scholar
[21]
P. C. Pistorius and F. Fatollahi-Fard, Production of titanium oxycarbide from titania-rich mineral sands, TMS Annual Meeting (2015) 297 – 304.
DOI: 10.1007/978-3-319-48214-9_34
Google Scholar
[22]
S. Jiao and H. Zhu, Novel metallurgical process for titanium production, J. Mater. Res. 21 (2006) 2172 – 2175.
DOI: 10.1557/jmr.2006.0268
Google Scholar
[23]
J. M. Capus, Metal Powders: A Global Survey of Production, Applications and Markets 2001-2010, fourth ed., Elsevier, New York, (2005).
Google Scholar
[24]
B. Beauchamp, Raymor AP&C: Leading the way with plasma atomised Ti spherical powders for MIM, Powder Injection Moulding International 5 (December 2011) 55 – 57.
Google Scholar
[25]
A. J. Fenn, G. Cooley, D. Fray and L. Smith, Exploiting the FFC Cambridge process, Adv. Mater. Processes, 162 (2004) 51 – 53.
Google Scholar
[26]
R. Bhagat, M. Jackson, D. Inman and R. Dashwood, Production of Ti-W alloys from mixed oxide precursors via the FFC Cambridge process, J. Electrochem. Soc. 156 (2009) E1 – E7.
DOI: 10.1149/1.2999340
Google Scholar
[27]
I. Mellor, L. Grainger, K. Rao, J. Deane, M. Conti, G. Doughty and D. Vaughan, Titanium Powder Production via the Metalysis Process, in: M. Qian and F. H. Froes (Eds. ), Titanium Powder Metallurgy – Science, Technology and Applications, Butterworth-Heinemann, Waltham, Massachusetts, 2015, p.51.
DOI: 10.1016/b978-0-12-800054-0.00004-6
Google Scholar
[28]
L. L. Benson, I. Mellor and M. Jackson, Direct reduction of synthetic rutile using the FFC process to produce low cost novel titanium alloys, J. Mater. Sci, 51 (2016) 4250 – 4261.
DOI: 10.1007/s10853-015-9718-1
Google Scholar
[29]
R. Hill, Titanium: 21st century metal, PROCESS – CSIRO research in mineral processing and metal production February (2002) 1 – 2.
Google Scholar