[1]
R.M. German, Titanium powder injection moulding (Ti-PIM): a review of the current status of materials, processing, properties and applications, Powder Injection Moulding International, 3 (2009) 21-37.
Google Scholar
[2]
W.E. Frazier, Metal additive manufacturing: a review, J. Mater. Eng. Perform., 23 (2014) 1917–(1928).
Google Scholar
[3]
X. Gong, T. Anderson, K. Chou, Review on powder-based electron beam additive manufacturing technology, Manuf. Rev. , 1 (2014) 1-12.
Google Scholar
[4]
C.K. Chua, K.F. Leong, 3D Printing and Additive Manufacturing: Principles and Applications, 4th ed., World Scientific, Singapore, (2014).
Google Scholar
[5]
H.P. Tang, M. Qian, N. Liu, X.Z. Zhang, G.Y. Yang, J. Wang, Effect of powder reuse times on additive manufacturing of Ti-6Al-4V by selective electron beam melting, JOM, 67 (2015) 555-563.
DOI: 10.1007/s11837-015-1300-4
Google Scholar
[6]
G.E. Fuchs, S.Z. Hayden, Microstructural evaluation of as-solidified and heat-treated y-TiAl based powders, Materials Science and Engineering: A, 152 (1992) 277-282.
DOI: 10.1016/0921-5093(92)90079-g
Google Scholar
[7]
C. Suryanarayana, F.H. Froes, R.G. Rowe, Rapid solidification processing of titanium alloys, International Materials Reviews, 36 (1991) 85-123.
DOI: 10.1179/imr.1991.36.1.85
Google Scholar
[8]
C.F. Yolton and J.H. Moll, U.S. Patent 4, 544, 404. (1985).
Google Scholar
[9]
S.J. Savage, F.H. Froes, Production of rapidly solidified metals and alloys, JOM, 36 (1984) 20-33.
DOI: 10.1007/bf03338423
Google Scholar
[10]
S.M.L. Sastry, T.C. Peng, P. Meschter, J. O'Neal, Rapid Solidification Processing of Titanium Alloys, JOM, 35 (1983) 21-28.
DOI: 10.1007/bf03338360
Google Scholar
[11]
C.F. Dixon, Atomizing molten metals–a review, Canadian Metallurgical Quarterly, 12 (1973) 309-322.
DOI: 10.1179/cmq.1973.12.3.309
Google Scholar
[12]
A. Walz, U.S. Patent 4, 822, 267. (1989).
Google Scholar
[13]
R. Gerling, R. Leitgeb, F.P. Schimansky, Porosity and argon concentration in gas atomized γ-TiAl powder and hot isostatically pressed compacts, Materials Science and Engineering: A, 252 (1998) 239-247.
DOI: 10.1016/s0921-5093(98)00656-x
Google Scholar
[14]
G. Wegmann, R. Gerling, F. -P. Schimansky, Temperature induced porosity in hot isostatically pressed gamma titanium aluminide alloy powders, Acta Materialia, 51 (2003) 741-752.
DOI: 10.1016/s1359-6454(02)00465-2
Google Scholar
[15]
Y.W. Kim, Y.J. Lee, Shape memory characteristics of gas-atomized Ti-Ni-Mo powders, in: C.T. Lim, J.C.H. Goh (Eds. ), WCB 2010 IFMBE Proceedings Springer, 2010, pp.1246-1246.
DOI: 10.1007/978-3-642-14515-5_316
Google Scholar
[16]
U. Habel, B.J. McTiernan, HIP temperature and properties of a gas-atomized γ-titanium aluminide alloy, Intermetallics, 12 (2004) 63-68.
DOI: 10.1016/j.intermet.2003.08.006
Google Scholar
[17]
R. Gerling, F.P. Schimansky, Prospects for metal injection moulding using a gamma titanium aluminide based alloy powder, Materials Science and Engineering: A, 329–331 (2002) 45-49.
DOI: 10.1016/s0921-5093(01)01544-1
Google Scholar
[18]
J.H. Moll, Utilization of gas-atomized titanium and titanium-aluminide powder, JOM, 52 (2000) 32-34.
DOI: 10.1007/s11837-000-0030-3
Google Scholar
[19]
C. Yolton, Gas atomized titanium and titanium aluminide alloys, P/M in aerospace and defense technologies, (1990) 123-131.
Google Scholar
[20]
B.H. Rabin, G.R. Smolik, G.E. Korth, Characterization of entrapped gases in rapidly solidified powders, Materials Science and Engineering: A, 124 (1990) 1-7.
DOI: 10.1016/0921-5093(90)90328-z
Google Scholar