[1]
M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Metal Foams : A Design Guide, 1st ed., Butterworth-Heinemann, Woburn, (2000).
DOI: 10.1016/b978-075067219-1/50001-5
Google Scholar
[2]
S. Thelen, F. Barthelat, L.C. Brinson, Mechanics considerations for microporous titanium as an orthopedic implant material., J. Biomed. Mater. Res. A. 69 (2004) 601–10.
DOI: 10.1002/jbm.a.20100
Google Scholar
[3]
D.C. Dunand, Processing of titanium foams, Adv. Eng. Mater. 6 (2004) 369–376.
Google Scholar
[4]
Z. Esen, E. Tarhan Bor, Ş. Bor, Characterization of loose powder sintered porous titanium and TI6Al4V alloy, Turkish J. Eng. Environ. Sci. 33 (2009) 207–219.
Google Scholar
[5]
O. Smorygo, A. Marukovich, V. Mikutski, A. a. Gokhale, G.J. Reddy, J.V. Kumar, High-porosity titanium foams by powder coated space holder compaction method, Mater. Lett. 83 (2012) 17–19.
DOI: 10.1016/j.matlet.2012.05.082
Google Scholar
[6]
B.M. Bram, C. Stiller, H.P. Buchkremer, D. Stöver, H. Baur, D. Ag, High-Porosity Titanium, Stainless Steel, and Superalloy Parts, Adv. Eng. Mater. 2 (2000) 196–199.
DOI: 10.1002/(sici)1527-2648(200004)2:4<196::aid-adem196>3.0.co;2-k
Google Scholar
[7]
P. Quadbeck, K. Kümmel, R. Hauser, G. Standke, J. Adler, G. Stephani, et al., Structural and Material Design of Open-Cell Powder Metallurgical Foams, Adv. Eng. Mater. 13 (2011) 1024–1030.
DOI: 10.1002/adem.201100023
Google Scholar
[8]
G. Campoli, M.S. Borleffs, S. Amin Yavari, R. Wauthle, H. Weinans, A.A. Zadpoor, Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing, Mater. Des. 49 (2013) 957–965.
DOI: 10.1016/j.matdes.2013.01.071
Google Scholar
[9]
A. Kirchner, B. Kloden, J. Luft, T. Weisgarber, B. Kieback, Process Window for Electron Beam Melting of Ti-6Al-4V, Euro PM2014 - AMTechnologies. (2014) 6–11.
DOI: 10.1179/0032589915z.000000000244
Google Scholar
[10]
ASTM Standard E111 - Standard Test Method for Young's Modulus, Tangent Modulus, and Chord Modulus, (2010).
DOI: 10.1520/e0111-04
Google Scholar
[11]
ASTM Standard E9 - Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature, (2009).
Google Scholar
[12]
I. Brown, G. Smith, P. McGavin, M. Sharp, M. Ryan, W. Downing, et al., Optimizing Cellular Structures for Titanium Implant Design, in: Cell. Mater. - CellMat 2014, (2014).
Google Scholar
[13]
Matweb. com, Titanium Ti-6Al-4V (Grade 5) Annealed, (2015).
Google Scholar
[14]
P. Heinl, C. Körner, R.F. Singer, Selective Electron Beam Melting of Cellular Titanium: Mechanical Properties, Adv. Eng. Mater. 10 (2008) 882–888.
DOI: 10.1002/adem.200800137
Google Scholar
[15]
Matweb. com, Arcam Ti6Al4V Titanium Alloy, (2015).
Google Scholar
[16]
M.F. Ashby, L.J. Gibson, Cellular Solids: Structure and Properties, 2nd ed., Cambridge University Press, Cambridge, (1997).
Google Scholar
[17]
X. Tan, Y. Kok, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, et al., Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting, Acta Mater. 97 (2015) 1–16.
DOI: 10.1016/j.actamat.2015.06.036
Google Scholar
[18]
S.M. Ahmadi, G. Campoli, S. Amin Yavari, B. Sajadi, R. Wauthle, J. Schrooten, et al., Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells., J. Mech. Behav. Biomed. Mater. 34 (2014) 106–15.
DOI: 10.1016/j.jmbbm.2014.02.003
Google Scholar