Review of the Powder Metallurgical Production of Net-Shaped Titanium Implants

Article Preview

Abstract:

The paper gives a short review of P/M routes which were developed or adapted by the authors for the net-shape manufacturing of titanium implants. Special attention is paid to the production of highly porous bone implants, where the porosity is achieved by the application of temporary space holder particles, which are removed before or during sintering by decomposition or dissolution. In this case, shaping was done either by machining of powder compacts in the green and sintered state or by metal injection moulding (MIM). The challenges of these shaping technologies and current solutions are discussed. To complete the review, two promising new technologies for the net-shape production of highly porous titanium implants, the replica technique and additive manufacturing are briefly introduced.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

311-317

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Lütjering, J.C. Williams, Titanium, second ed., Springer, Berlin, Heidelberg, New York, (2007).

Google Scholar

[2] T. Imwinkelried, Mechanical properties of open-pore titanium foam, J. Biomed. Mater. Res. Part A 81 (2007) 964-970.

DOI: 10.1002/jbm.a.31118

Google Scholar

[3] G. Ryan, A. Pandit, D.P. Apatsidis, Fabrication methods of porous metals for use in orthopedic applications, Biomaterials 27 (2006) 2651–2670.

DOI: 10.1016/j.biomaterials.2005.12.002

Google Scholar

[4] A. Laptev, M. Bram, H.P. Buchkremer, D. Stöver, Study of production route for titanium parts combining very high porosity and complex shape, Powder Metall. 47 (2004) 85-92.

DOI: 10.1179/003258904225015536

Google Scholar

[5] A. Laptev, O. Vyal, M. Bram, H.P. Buchkremer, D. Stöver, Green strength of powder compacts provided production of highly porous titanium parts, Powder Metall. 48 (2005) 358-364.

DOI: 10.1179/174329005x73838

Google Scholar

[6] M. Bram, A. Laptev, H.P. Buchkremer, D. Stöver, Herstellung von hochporösen, endkonturnahen Titan-Formkörpern für biomedizinische Anwendungen, Materialwiss. Werkst. 35 (2004) 213-218.

DOI: 10.1002/mawe.200400731

Google Scholar

[7] A. Laptev, M. Bram, Manufacturing hollow titanium parts by powder metallurgy route and space holder technique, Mater. Lett. 160 (2015) 101-103.

DOI: 10.1016/j.matlet.2015.07.094

Google Scholar

[8] H. Schiefer, M. Bram, H.P. Buchkremer, D. Stöver, Mechanical examination on demntal implants with porous coating, J. Mater. Sci.: Mater. Med. 20 (2009), 1763-1770.

DOI: 10.1007/s10856-009-3733-1

Google Scholar

[9] M. Bram, C. Kempmann, A. Laptev, D. Stöver, K. Weinert, Investigation on the machining of sintered titanium foams using face milling and peripheral grinding, Adv. Eng. Mater. 5 (2003) 441-447.

DOI: 10.1002/adem.200300356

Google Scholar

[10] ASM Handbook v. 7. Powder metal technologies and applications. ASM International, (1998).

Google Scholar

[11] M. Bram, A. Laptev, D. Stöver and H.P. Buchkremer, BRD Patent 10224671. (2003).

Google Scholar

[12] N. Tuncer, M. Bram, A. Laptev, T. Beck, A. Moser, H.P. Buchkremer, Study of metal injection molding of highly porous titanium by physical modeling and direct experiments, J. Mater. Process. Technol. 214 (2014) 1352-1360.

DOI: 10.1016/j.jmatprotec.2014.02.016

Google Scholar

[13] A.P. Cysne Barbosa, M. Bram, D. Stöver, H.P. Buchkremer, Realization of a titanium spinal implant with a gradient in porosity by 2-component metal injection moulding, Adv. Eng. Mater. 15 (2013) 510-521.

DOI: 10.1002/adem.201200289

Google Scholar

[14] N.F. Daudt, M. Bram, A.P. Cysne Barbosa, C. Alves Jr., Surface modification of porous titanium by plasma treatment, Mater. Lett. 141 (2015) 194-197.

DOI: 10.1016/j.matlet.2014.11.083

Google Scholar

[15] A.M. Laptev, N.F. Daudt, O. Guillon, M. Bram, Increase of shape stability and porosity of injection molded highly porous titanium parts, Adv. Eng. Mater. 17 (2015) 1579-1587.

DOI: 10.1002/adem.201500061

Google Scholar

[16] J.P. Li, S.H. Li, K. de Groot, P. Layrolle, Preparation and characterization of porous titanium, Key Eng. Mater. 218-220 (2002) 51-54.

DOI: 10.4028/www.scientific.net/kem.218-220.51

Google Scholar

[17] P. Quadbeck, K. Kümmel, R. Hauser, G. Standke, J. Adler, G. Stephani, B. Kieback, Structural and material design of open-cell powder metallurgical foams, Adv. Eng. Mater. 13 (2011) 1024-1030.

DOI: 10.1002/adem.201100023

Google Scholar

[18] P. Heinl, A. Rottmair, C. Körner, R.F. Singer, Cellular titanium by selective electron beam melting, Adv. Eng. Mater. 9 (2007) 360-364.

DOI: 10.1002/adem.200700025

Google Scholar

[19] Information on http: /www. arcam. com.

Google Scholar

[20] ASTM F67-13, Standard specification for unalloyed titanium, for surgical implant applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700), ASTM International, West Conshohocken, PA, (2013).

DOI: 10.1520/f0067

Google Scholar

[21] Implants for surgery, metallic materials. Part 2: Unalloyed titanium, ISO 5832-2: 1999, ISO, Geneva, Switzerland.

Google Scholar

[22] ASTM F2989-13, Standard specification for metal injection molded unalloyed titanium components for surgical implant applications, ASTM International, West Conshohocken, PA, (2013).

DOI: 10.1520/f2989-21

Google Scholar

[23] A.T. Sidambe, Biocompatibility of advanced manufactured titanium implants. A review, Materials 7 (2014) 8168-8188.

DOI: 10.3390/ma7128168

Google Scholar