[1]
IAEA. Chapter 5, IAEA Radiation Oncology Physics: A Handbook For Teachers And Students., In IAEA Treatment Machines For External Beal Radiotherapy. Vienna: International Atomic Energy Agency, (2005).
Google Scholar
[2]
Eaves, G. Principles of Radiation Protection. London: Iliffe Books Ltd., (1964).
Google Scholar
[3]
Akkurt, I., H. Akyildirim, B. Mavi, S. Kilincarslan, and C. Basyigit. Ann. Nucl. Energy 37 (2010): 910.
Google Scholar
[4]
Singh, K.J., N. Singh, R.S. Kaundal, and k. Singh. Nuclear Instruments and Methods in Physics Research B 266 (2008): 944.
Google Scholar
[5]
Mortazavi, M.J., et al. Iran. J. Radiat. Res. 8, no. 1 (2010): 11.
Google Scholar
[6]
Makarious, A.S., I.I. Bashter, A.E.S. Abdo, M.S.A. Azim, and W.A. Kansouh. Annals of Nuclear Energy 23, no. 3 (1996): 185.
DOI: 10.1016/0306-4549(95)00021-1
Google Scholar
[7]
Brandt, A.M. Cement Wapno Beton., 18, no. 2 (2013): 115.
Google Scholar
[8]
Tabacaru, C., A. Carlescu, A.V. Sandu, M.I. Petcu, and F. Iacomi. Rev. Chim. (Bucharest) 62, no. 4 (2011): 427.
Google Scholar
[9]
Alhjali, S., S. Yousef, M. Kanbour, and B. Naoum. Radiation Protection Dosimetry 151, no. 1 (2013): 127.
Google Scholar
[10]
Maris, M., D.A. Maris, S. Jipa, T. Zaharescu, and L.M. Gorghiu. Rev. Chim. (Bucharest) 61, no. 3 (2010): 235.
Google Scholar
[11]
Gencel, O., A. Bozkurt, E. Kam, and T. Korkut. Annals of Nuclear Energy 38, no. 12 (2011): 2719.
Google Scholar
[12]
Azeez, A. B., K. S. Mohammed, A. V. Sandu, A. M. M. A. Bakri, H. Kamarudin, and I. G. Sandu. Evaluation of Radiation Shielding Properties for Concrete with Different Aggregate Granule Sizes., REVISTA DE CHIMIE -BUCHAREST 64, no. 8 (2013).
Google Scholar
[13]
Rasa, E., H. Ketabchi, and M.H. Afshar. Predicting Density and Compressive Strength of Concrete Cement Paste Containing Silica Fume Using Artificial Neural Networks., Tansaction A: Civil Engineering 16, no. 1 (2009).
Google Scholar
[14]
Naville, A. M. Properties of Concrete. New York: John Wiley and Sons, (1996).
Google Scholar
[15]
Neville, A. M. Properties of Concrete. 4th. Longman, (2000).
Google Scholar
[16]
ASTM C 637-98a. Standard Specification for Aggregates for Radiation-Shielding Concrete., ASTM International, (2003).
Google Scholar
[17]
ASTM C33/C33M-11a. Standard Specification for Concrete Aggregates., ASTM International, (2013).
Google Scholar
[18]
McGinley, P.H. Shielding Techniques., Medical Physics Publishing, (1998).
Google Scholar
[19]
ICRP-103. The 2007 Recommendations of the International Commission on Radiological Protection., Edited by J. Valentin. Annals of the ICRP (Elesevier Science), (2007).
Google Scholar
[20]
NCRP-151. Structural Shielding Design and Evaluation for Megavoltage x- and Gamma-ray Radiotherapy Facilities. National Council on Radiation Protection and Measurements, (2005).
DOI: 10.1088/0952-4746/26/3/b01
Google Scholar
[21]
Facure, A., and A.X. Silva. The use of high-density concretes in radiotherapy treatment roon design., Applied Radiation and Isotopes (Elsevier) 65 (2007): 1023-1028.
DOI: 10.1016/j.apradiso.2007.04.006
Google Scholar
[22]
BNBC. Bangladesh National Building Code., Chap. 5. (2012).
Google Scholar
[23]
Yang, J., Z. Chen, Y. Gan, and Q. Tao. Research progress on radiation shielding concrete., Applied Mechanics and Materials (Trans Tech Publications) 253 (December 2012): 303-307.
DOI: 10.4028/www.scientific.net/amm.253-255.303
Google Scholar
[24]
Iffat, Shohana. Relation Between Density and Compressive Strength of Hardened Concrete., Concrete Research Letters 6, no. 4 (December 2015): 182-189.
Google Scholar
[25]
ASTM C 642-13. Standard Test Method for Density, Absorption, and Voids in Hardened Concrete., ASTM International, (2013).
Google Scholar
[26]
Sarker, P. K. Neutron dosimetry in the particle accelerator environment., Radiation Measurements, 2010: 1476.
Google Scholar
[27]
Wiki. Radiation. 1 27, 2016. https: /en. wikipedia. org/wiki/Radiation (accessed 2 4, 2016).
Google Scholar