Effect of Carbon Black Substitution with Raw and Modified Bentonite on the Thermal Aging Resistance of Natural Rubber Composites

Article Preview

Abstract:

The effect of carbon black (CB) substitution with raw (BNT) and modified (M-BNT) bentonite on the thermal aging resistance of natural rubber (NR) composites was investigated in this study. NR composites were prepared at varied proportions of CB, M-BNT, and BNT using a three-component, third degree simplex lattice mixture design of experiment (DOE). M-BNT was produced by modifying sodium-activated bentonite with tetradecyldimethylamine (TDA) salt and cocamide diethanolamine (CDEA). Thermal aging was performed at 70 and 100°C for 168 and 336 h. Substitution of CB with 5 phr M-BNT gave the highest values of tensile properties (modulus and strength) for both unaged and aged samples. This is attributed to the synergistic effect of CB and M-BNT fillers on the tensile properties of NR composites. In terms of property retention (%), composites filled with M-BNT and BNT clay fillers attained the highest values which signified their excellent thermal aging resistance. This observation proves the barrier effect of clay platelet structure which hinders oxygen diffusion in the rubber. Reduced hierarchical models as function of CB, M-BNT, and BNT proportions were used to generate contour plots for tensile properties of NR composites after 168 h of aging at 70 and 100°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-13

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.K. Chattopadhyay, S. Chattopadhyay, N.C. Das, P.P. Bantyopadhyay, Impact of carbon black substitution with nanoclay on microstructure and tribological properties of ternary elastomeric composites, Mater. Design 32 (2011) 4696-4704.

DOI: 10.1016/j.matdes.2011.06.050

Google Scholar

[2] X. Yang, MP Cohen, ML Senyek, DK Parker, SW Cronin, LT Lukich, US Patent 7342065B2 (2008).

Google Scholar

[3] S. Praveen, P. Chatotopadhyay, P. Albert, V. Dalvi, B. Chakraborty, S. Chattopadhyay, Synergistic effect of carbon black and nanoclay fillers in styrene butadiene rubber matrix: development of dual structure, Composites Part A 40 (2010) 309-316.

DOI: 10.1016/j.compositesa.2008.12.008

Google Scholar

[4] Z. Ali, H. Hong Le, S. Ilisch, T. Thurn-Albrecht, H. Radusch, Morphology development and compatibilization effect in nanoclay filled rubber blends, Polymer 51 (2010) 4580-4588.

DOI: 10.1016/j.polymer.2010.08.002

Google Scholar

[5] H. Essawy, D. El-Nashar, The use of montmorillonite as a reinforcing and compatibilizing filler for NBR/SBR rubber blend, Polym. Test 23 (2004) 803-807.

DOI: 10.1016/j.polymertesting.2004.03.003

Google Scholar

[6] M.T. Ton-That, F. Perrin-Sarazin, M.N. Bureau, K.C. Cole, J. Denault., Polymer-clay nanocomposites prepared in supercritical carbon dioxide, Ann. Mtg. of Polym. Proc. Soc. 20 (2004) 36.

Google Scholar

[7] S. Hambir, N. Bulakh, P. Kodgire, R. Kalgaonkar, J.P. Jog, PP/clay nanocomposites: effect of clay treatment on morphology and dynamic mechanical properties, J. Appl. Polym. Sci. 81 (2001) 1786-1792.

DOI: 10.1002/app.1611

Google Scholar

[8] Y. Lyatskaya, A.C. Balazs, Modeling the phase behavior of polymer-clay composites, Macromol. 31 (1998) 6676–6680.

DOI: 10.1021/ma980687w

Google Scholar

[9] J.S. Hong, Y.K. Kim, K.H. Ahn, S.J. Lee, C.Y. Kim, Interfacial tension reduction in PBT/PE/clay nanocomposite, Rheol. Acta. 46 (2007) 469-478.

DOI: 10.1007/s00397-006-0123-1

Google Scholar

[10] R.K. Shah, D.R. Paul, Polyolefin-organoclay nanocomposites: Properties, morphology and applications, Ann. Mtg. of Polym. Proc. Soc. 21, (2005) 8970.

Google Scholar

[11] P.J. Yoon, T.D. Fornes, D.L. Hunter, D.R. Paul, Formation and properties of nylon 6 nanocomposites, Polymer 43 (2002) 6727-6741.

DOI: 10.1016/s0032-3861(02)00638-9

Google Scholar

[12] C. Zilg, R. Thomann, R. Mülhaupt, J. Finter, Polyurethane nanocomposites containing laminated anisotropic nanoparticles derived from organophilic layered silicates, Adv. Mater. 11 (1999) 49-52.

DOI: 10.1002/(sici)1521-4095(199901)11:1<49::aid-adma49>3.0.co;2-n

Google Scholar

[13] T. Lan, T.J. Pinnavaia, Clay-reinforced epoxy nanocomposites, Chem. Mater. 6 (1994) 2216- 2219.

DOI: 10.1021/cm00048a006

Google Scholar

[14] J.T. Kim, T.S. Oh, D.H. Lee, Preparation and characteristics of nitrile rubber (NBR) nanocomposites based on organophilic layered clay, Polym. Int. 52 (2003) 1058.

DOI: 10.1002/pi.1110

Google Scholar

[15] L.T. Vo, E. Giannelis, Compatibilizing poly(vinylidene fluoride)/nylon-6 blends with nanoclay, Macromol. 40 (2007) 8271–8276.

DOI: 10.1021/ma071508q

Google Scholar

[16] A. Mostafa, A. Abouel-Kasem, M. Bayoumi, M. El-Sebaie, The influence of CB loading on thermal aging resistance of SBR and NBR rubber compounds under different aging temperature, Mater. Design 30 (2009) 791-795.

DOI: 10.1016/j.matdes.2008.05.065

Google Scholar

[17] S. Rooj, A. Das, K. Stockelhuber, N. Mukhopadhyay, A. Bhattacharyya, D. Jehnichen, G. Heinrich, Pre-intercalation of long chain fatty acid in the interlayer space of layered silicates and preparation of montmorillonite/natural rubber nanocomposites, Appl. Clay Sci., (2012).

DOI: 10.1016/j.clay.2012.03.005

Google Scholar

[18] A. Choudhury, A. Bhowmick, M. Soddemann, Effect of organo-modified clay on accelerated aging resistance of hydrogenated nitrile rubber nanocomposites and their life time prediction, Polym. Degrad. and Stabil. 95 (2010) 2555-2562.

DOI: 10.1016/j.polymdegradstab.2010.07.032

Google Scholar

[19] J.A. Cornell, Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data, John Wiley & Sons, Inc., New York, (2002).

Google Scholar