Effect of Grit Type, Aging Temperature, and Aging Time on Particle Size of Ground Natural Rubber/Zeolite Composite Powder

Article Preview

Abstract:

This study reports the results of investigation on the main and interaction effects of grit type, aging temperature, and aging time on particle size of ground natural rubber/zeolite (GNR/Z) composite powder using general factorial design of experiment. GNR/Z composite powder produced by mechanical grinding is porous, like an aggregated chain structure. These aggregates exist in clusters of irregular shape. Analysis of variance (ANOVA) shows that the effects of aging temperature and aging time depend on the particle size range. GNR/Z composite powder with large particle size is produced when aging is done at low temperature and short time due to high resistance of rubber to oxidation. On the other hand, GNR/Z composite powder with small particle size is produced when aging is done at low or high temperature and longer aging time. Low temperature condition offers high O2 concentration available to oxidize rubber while high temperature condition leads to more chain scissions due to higher oxidation rate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

24-29

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Adhikari, D. De, S. Maiti, Reclamation and recycling of waste rubber, Prog. Polym. Sci. 25 (2000) 909-948.

Google Scholar

[2] K. Harrison, S. G. Tong, N. C. Hilyard, An economic evaluation cryogenic-grinding of scrap automotive tyres, Conserv. Recycl. (1986) 9 1-14.

DOI: 10.1016/0361-3658(86)90128-1

Google Scholar

[3] G. R. Daborn, R. Derry, Cryogenic comminution in scrap recycling, Conserv. Recycl. 1 (1988) 49-63.

Google Scholar

[4] Y. Fang, M. Zhan, Y. Wang, The status of recycling of waste rubber. Matl Desg. 22 (2001) 123-128.

Google Scholar

[5] S. Ramarad, M. Khalid, C. T. Ratman, A. Luqman Chuah, W. Rashmi, Waste tire rubber in polymer blends: A review on the evolution, properties and future, Prog. Matl Sci. 72 (2015) 100-140.

DOI: 10.1016/j.pmatsci.2015.02.004

Google Scholar

[6] M. Hadad, An experimental investigation of the effects of machining parameters on environmentally friendly grinding process, J. Clnr. Prod. 108 (2015) 217-231.

DOI: 10.1016/j.jclepro.2015.05.092

Google Scholar

[7] B. Denkena, T. Grove, T. Gottsching, Grinding with patterned grinding wheel, CIRP J. Mfg. Sci. Tech. 8 (2015) 12-21.

Google Scholar

[8] A. Gosh, P. Antony, A. K. Bhattacharya, A. K. Bhowmick, S. K. De, Replacement of virgin rubbers by waste ground vulcanizates in blends of silicone rubber and fluororubber based on tetrafluoroethylene/propylene/vinylidene fluoride terpolymer, J. Appl. Polym. Sci. 82 (2001).

DOI: 10.1002/app.2081

Google Scholar

[9] A. Gosh, B. Kumar, A. K. Bhattacharya, S. K. De, Effects of blend ratio and vulcanizate powders on the processability of silicone rubber/fluororubber blends, J. Appl. Polym. Sci. 88 (2003) 2377-2387.

DOI: 10.1002/app.11851

Google Scholar

[10] A. Gosh, R. S. Rajeev, A. K. Bhattacharya, A. K. Bhowmick, S. K. De, Recycling of silicone rubber waste: effect of ground silicone rubber vulcanizate powder on the properties of silicone rubber, Polym. Engg Sci. 43 (2003) 279-296.

DOI: 10.1002/pen.10024

Google Scholar

[11] B. Pajarito, C.A. De Torres, M. Maningding, Effect of ingredient loading on surface migration kinetics of additives in vulcanized natural rubber compounds, Sci. Diliman 26 (2014) 21-39.

Google Scholar

[12] G. E. Christidis, D. Moraetis, E, Keheyan, L. Akhalbedashvili, N. Kekelidze, R. Gevorkyan, H. Yeritsyan, H. Sargsyan, Chemical and thermal modification of natural HEU-type zeolitic materials from Armenia, Georgia and Greece, Appl. Cl. Sci. 24 (2003).

DOI: 10.1016/s0169-1317(03)00150-9

Google Scholar

[13] M. A. López-Manchado, B. Herrero, M. Arroyo, Preparation and characterization of organoclay nanocomposites based on natural rubber, Polym. Int. 57. 2 (2003) 1070-1077.

DOI: 10.1002/pi.1161

Google Scholar

[14] S. Chakraborty, R. Sengupta, S. Dasgupta, R. Mukhopadhyay, S. Bandyopadhyay, M. Joshi, S. Ameta, Synthesis and characterization of in situ sodium‐activated and organomodified bentonite clay/styrene–butadiene rubber nanocomposites by a latex blending technique, J. Appl. Polym. Sci. 113. 2 (2009).

DOI: 10.1002/app.30146

Google Scholar

[15] G. J. Van Amerongen, Oxidative and nonoxidative thermal degradation of rubber, I. Engg Chem. 47. 12 (1955) 2565-2574.

DOI: 10.1021/ie50552a054

Google Scholar