The Influence of High-k Material/SiO2 Gate Stacks on Direct Gate Tunneling Current of Cylindrical Surrounding-Gate MOSFETs

Article Preview

Abstract:

In this paper, we present a model of gate tunneling current in cylindrical surrounding-gate MOSFETs through dual layer high-k dielectric/SiO2 stacks. The model was derived under a quantum perturbation theory by taking into account both structural and electrical confinement effects. The influences of high-k materials and SiO2 thickness on the gate tunneling current have been studied. The calculated results show that the HfO2 is the most effective high-k material to decrease the gate tunneling current. It is also shown that the gate tunneling current is reduced with the SiO2 thickness. In addition, the obtained tunneling currents are fitted well with those obtained under the self-consistent calculation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-22

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] ITRS 2013 Ed, available at www. itrs. net/links/2013ITRS/Home2013. htm.

Google Scholar

[2] D. Jimenez, B. Iniguez, J. Su, L F. Marsal, J. Pallars, J. Roig, and D. Flores, IEEE Electron. Dev. Lett., 25(7), 571-573 (2004).

DOI: 10.1109/led.2004.831902

Google Scholar

[3] J. -P. Colinge, Solid State Electron., 48(6), 897–905(2004).

Google Scholar

[4] B. Yu, W. -Y. Lu, H. Lu, and Y. Taur, IEEE Trans. Electron. Dev., 54(3), 492-496 (2007).

Google Scholar

[5] G. X. Hu, L. -L. Wang, R. Liu, and T. -A Tang, Commun. Theor. Phys., 54, 763-767 (2010).

Google Scholar

[6] W. Cao, C. Shen, S. Q. Cheng, D. M. Huang, H. Y. Yu, N. Singh, G. Q. Lo, D. L. Kwong, and M. -F. Li, IEEE Electron Dev. Lett., 32(4) 461-463 (2011).

Google Scholar

[7] B. Yu, L. Q. Wang, Y. Yuan, P. M. Asbeck, and Y. Taur, IEEE Trans. Electron Dev., 55(11), 2846–2858 (2008).

DOI: 10.1109/ted.2008.2005163

Google Scholar

[8] R. Han and C. Li, Jpn. J. Appl. Phys, 52, 024302 (2013).

Google Scholar

[9] S. Lina, Z. Yiqi, L. Cong, and L. Dechang, J. Semicond. 35(3), 034009 (2014).

Google Scholar

[10] S. M. Amoroso, C. Monzio Compagnoni, A. Mauri, A. Maconi, A. S. Spinelli, and A. L. Lacaita, IEEE Trans. Electron. Dev., 58(9), 3116-3126 (2011).

DOI: 10.1109/ted.2011.2159010

Google Scholar

[11] F. Chaves, D. Jimenez, and J. Sune, Solid State Electron. 68, 93-97 (2012).

Google Scholar

[12] F. Chaves, D. Jimenez, and J. Sune, Solid State Electron. 76, 19-24 (2012).

Google Scholar

[13] C. Bimo, F. A. Noor, and Khairurrijal, Compact modeling of quantum effects in undoped long-channel cylindrical surrounding-gate MOSFETs, in Asian Physics Symposium 2015 (Bandung, August 19-20, 2015).

DOI: 10.1088/1742-6596/739/1/012025

Google Scholar

[14] C. Bimo, F. A. Noor, and Khairurrijal, Modeling of Electron Leakage Current in Undoped Cylindrical Surrounding-Gate MOSFETs, (submitted to elsewhere).

DOI: 10.1088/1742-6596/739/1/012025

Google Scholar

[15] T. Kauerauf, B. Govoreanu, R. Degraeve, G. Groeseneken, and H. Maes, Solid State Electron., 49(5), 695-701 (2005).

DOI: 10.1016/j.sse.2005.01.018

Google Scholar

[16] H. K. Tyagi, B. Prasad, P. J. George, Phys. Status Solidi C, 6(12), 2750- (2009).

Google Scholar

[17] F. A. Noor, M. Abdullah, Sukirno, Khairurrijal, A. Ohta, and S. Miyazaki, J. Appl. Phys., 108(9), 093711-1/4 (2010).

Google Scholar