[1]
Mamun M, Bindiganavile V. Sulphate resistance of fibre reinforced cement-based foams. Construction and Building Materials. 2011; 25(8): 3427-42.
DOI: 10.1016/j.conbuildmat.2011.03.034
Google Scholar
[2]
Santhanam M, Cohen MD, Olek J. Effects of gypsum formation on the performance of cement mortars during external sulfate attack. Cement and Concrete Research. 2003; 33(3): 325-32.
DOI: 10.1016/s0008-8846(02)00955-9
Google Scholar
[3]
C114-13 A. Standard Test Methods for Chemical Analysis of Hydraulic Cement,. ASTM International, West Conshohocken, PA. (2013). p.32. DOI: 10. 1520/C0114-13.
Google Scholar
[4]
Wang JG. Sulfate attack on hardened cement paste. Cement and Concrete Research. 1994; 24(4): 735-42.
DOI: 10.1016/0008-8846(94)90199-6
Google Scholar
[5]
Tixier R, Mobasher B. Modeling of damage in cement-based materials subjected to external sulfate attack. I: formulation. Journal of Materials in Civil Engineering. 2003; 15(4): 305-13.
DOI: 10.1061/(asce)0899-1561(2003)15:4(305)
Google Scholar
[6]
Tixier R, Mobasher B. Modeling of damage in cement-based materials subjected to external sulfate attack. II: Comparison with experiments. Journal of Materials in Civil Engineering. 2003; 15(4): 314-22.
DOI: 10.1061/(asce)0899-1561(2003)15:4(314)
Google Scholar
[7]
Al-Amoudi OSB. Attack on plain and blended cements exposed to aggressive sulfate environments. Cement and Concrete Composites. 2002; 24(3): 305-16.
DOI: 10.1016/s0958-9465(01)00082-8
Google Scholar
[8]
Torii K, Kawamura M. Effects of fly ash and silica fume on the resistance of mortar to sulfuric acid and sulfate attack. Cement and Concrete Research. 1994; 24(2): 361-70.
DOI: 10.1016/0008-8846(94)90063-9
Google Scholar
[9]
Torii K, Taniguchi K, Kawamura M. Sulfate resistance of high fly ash content concrete. Cement and Concrete Research. 1995; 25(4): 759-68.
DOI: 10.1016/0008-8846(95)00066-l
Google Scholar
[10]
Tian B, Cohen MD. Does gypsum formation during sulfate attack on concrete lead to expansion? Cement and Concrete Research. 2000; 30(1): 117-23.
DOI: 10.1016/s0008-8846(99)00211-2
Google Scholar
[11]
C39/39M-14a A. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,. ASTM International, W. Conshohocken, PA. (2014). p.7.
Google Scholar
[12]
C496/C496M-11 A. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens,. ASTM International, West Conshohocken, PA. (2011). p.5.
Google Scholar
[13]
C1012/1012M-13 A. Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution,. ASTM International, West Conshohocken, PA. (2013). p.8.
DOI: 10.1520/c1012-03
Google Scholar
[14]
C265-08 A. Standard Test Method for Water-Extractable Sulfate in Hydrated Hydraulic Cement Mortar,. ASTM International, West Conshohocken, PA. (2008). p.3. DOI: 10. 1520/C0265-08.
DOI: 10.1520/c0265-99
Google Scholar
[15]
Sahmaran M, Kasap O, Duru K, Yaman I. Effects of mix composition and water–cement ratio on the sulfate resistance of blended cements. Cement and Concrete Composites. 2007; 29(3): 159-67.
DOI: 10.1016/j.cemconcomp.2006.11.007
Google Scholar
[16]
Santhanam M, Cohen MD, Olek J. Mechanism of sulfate attack: a fresh look: part 1: summary of experimental results. Cement and Concrete Research. 2002; 32(6): 915-21.
DOI: 10.1016/s0008-8846(02)00724-x
Google Scholar
[17]
Detwiler, RJ, Mehta, PK. Chemical and physical effects of silica fume on the mechanical behaviour of concrete. ACI Mater. J. 86(6): 609-614.
Google Scholar