[1]
D.V. Val, M. G Stewart. Life-cost analysis of reinforced concrete structures in marine environments[J]. Struct. Saf. 25(2003) 343–362.
DOI: 10.1016/s0167-4730(03)00014-6
Google Scholar
[2]
F.N. Smith, M. Tulimin. Using stainless steel as long-lasting rebar material[J]. Mater. Perform. 38(1999) 72–76.
Google Scholar
[3]
F. Presuel-Moreno, J.R. Scully, S.R. Sharp. Literature review of commercially available alloys that have potential as low-cost, corrosion-resistant concrete reinforcement[J]. Corrosion, 66(2010) 1–13.
DOI: 10.5006/1.3479955
Google Scholar
[4]
P. Ghods, O.B. Isgor, F. Bensebaa, D. Kingston. Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution[J]. Corros. Sci., 58(2012) 159–167.
DOI: 10.1016/j.corsci.2012.01.019
Google Scholar
[5]
F.L. Fei, J. Hu, J.X. Wei, Q.J. Yu, Z.S. Chen, Corrosion performance of steel reinforcement in simulated concrete pore solutions in the presence of imidazoline quaternary ammonium salt corrosion inhibitor[J]. Constr. Build. Mater. 70(2014) 43–53.
DOI: 10.1016/j.conbuildmat.2014.07.082
Google Scholar
[6]
S. Fajardo, D.M. Bastidas, M. Criado, J.M. Bastidas. Electrochemical study on the corrosion behaviour of a new low-nickel stainless steel in carbonated alkaline solution in the presence of chloride[J]. Electrochim. Acta, 129(2014) 160–170.
DOI: 10.1016/j.electacta.2014.02.107
Google Scholar
[7]
C. Donik, A. Kocijan, J.T. Grant, M. Jenko, A. Drenik, B. Pihlar, XPS study of duplex stainless steel oxidized by oxygen atoms[J]. Corros. Sci. 51(2009) 827–832.
DOI: 10.1016/j.corsci.2009.01.021
Google Scholar
[8]
L.Q. Guo, M.C. Lin, L.J. Qia, A.A. Volinsky, Duplex stainless steel passive film electrical properties studied by in situ current sensing atomic force microscopy, Corros. Sci. 78(2014) 55–62.
DOI: 10.1016/j.corsci.2013.08.031
Google Scholar
[9]
M. Mancio, G. Kusinski, P.J.M. Monteiro, T.M. Devine. Electrochemical and in-situ SERS study of passive film characteristics and corrosion performance of 9%Cr micro-composite steel in highly alkaline environments[J]. J. ASTM Inter., 6(2009) 1–10.
DOI: 10.1520/jai101903
Google Scholar
[10]
H. B. Gunay, P. Ghods, O. B. Isgor, G. J.C. Carpenter, X. H Wu. Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS[J]. Appl. Surf. Sci., 274(2013) 195– 202.
DOI: 10.1016/j.apsusc.2013.03.014
Google Scholar
[11]
W. Xu, K. Daub, X. Zhang, J.J. Noel, D.W. Shoesmith, J.C. Wren. Oxide formation and conversion on carbon steel in mildly basic solutions[J]. Electrochim. Acta, 54(2009) 5727–5738.
DOI: 10.1016/j.electacta.2009.05.020
Google Scholar
[12]
C. Andrade, J. A. González. Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements[J]. Mater. Corros., 29(1978) 515–519.
DOI: 10.1002/maco.19780290804
Google Scholar
[13]
J.W. Wu, D. Bai, A. P. Baker, Z.H. Li and X.B. Liu. Electrochemical techniques correlation study of on-line corrosion monitoring probes[J]. Mater. Corros., 66(2015) 143–151.
DOI: 10.1002/maco.201307175
Google Scholar
[14]
E. Barsoukov, J.R. Macdonald. Impedance spectroscopy theory, experiment, and applications, 2nd Ed., John Wiley & Sons, Inc., Hoboken, New Jersey, (2005).
DOI: 10.1002/jrs.1558
Google Scholar
[15]
R. Liu, L.H. Jiang, J.X. Xu, C.S. Xiong, Z. J Song, Influence of carbonation on chloride-induced reinforcement corrosion in simulated concrete pore solutions[J]. Constr. Build. Mater. 56(2014) 16–20.
DOI: 10.1016/j.conbuildmat.2014.01.030
Google Scholar