[1]
Mehta, P.K. and Monteiro, P.J.M. Concrete: Microstructure, Properties, and Materials. McGraw-Hill, Hightstown, NJ, USA, (2006).
Google Scholar
[2]
Gjorv, O.E. Durability and service life of concrete structures. Proceedings of 1st Fib Congress, Tokyo, Japan. Japan Prestressed Concrete Engineering Association, Tokyo, Japan, 2002, 8, pp.1-16.
Google Scholar
[3]
Ge, Z. The adsorption of chloride, sulfate and alkali on the surface of C-S-H and its influence on durability of concrete (D). Hebei, Tangshan, Hebei Polytechnic University, (2005).
Google Scholar
[4]
Ramachandran, V.S. Possible states of chloride in the hydration of tricalcium silicate in the presence of calcium chloride. Materials and Structures, 1971, 4(1): 3-12.
DOI: 10.1007/bf02473926
Google Scholar
[5]
Sugiyama, D. Chemical alteration of calcium silicate hydrate (CSH) in sodium chloride solution. Cement and Concrete Research, 2008, 35(9): 1270-1275.
DOI: 10.1016/j.cemconres.2008.06.002
Google Scholar
[6]
Viallis, H. Interaction between salts (NaCl, CsCl) and calcium silicate hydrates (CSH). Journal of Physical Chemistry B, 1999, 103(25): 5212-5219.
DOI: 10.1021/jp983757+
Google Scholar
[7]
Hill J. The effect of sodium chloride on the dissolution of calcium silicate hydrate gels. Waste Management, 2006, 26(7): 758-768.
DOI: 10.1016/j.wasman.2006.01.022
Google Scholar
[8]
Kalinichev, A.G. Molecular dynamics modeling of the structure, dynamics and energetics of mineral-water interfaces: Application to cement materials. Cement and Concrete Research, 2007, 37: 337-347.
DOI: 10.1016/j.cemconres.2006.07.004
Google Scholar
[9]
Cygan, R.T. Molecular models of hydroxide, oxyhydroxide, clay phases and the development of a general force field. Journal of Physics and Chemistry, 2004, 108: 1255-1266.
DOI: 10.1021/jp0363287
Google Scholar
[10]
Kalinichev, A.G. and Kirkpatrick, R.J. Molecular Dynamics modeling of chloride binding to the surfaces of calcium hydroxide, hydrated calcium aluminate, and calcium silicate phases. Chemistry and Materials, 2002, 14(8): 3539-3549.
DOI: 10.1021/cm0107070
Google Scholar
[11]
Hou, D. Molecular dynamics study of water and ions transport in nano-pore of layered structure: A case study of tobermorite. Microporous and Mesoporous Materials, 2014, 195: 9-20.
DOI: 10.1016/j.micromeso.2014.04.011
Google Scholar
[12]
Hamid, S. and Kristallogr, Z. (1981). 154(189-198).
Google Scholar
[13]
Mindess, S. and Young, J. Concrete, second ed., Prentice Hall PTR, (2003).
Google Scholar
[14]
Taylor, H.F.W. Cement Chemistry, 2nd ed.; Thomas Telford Publishing: London, (1997).
Google Scholar
[15]
Wang, J. Molecular modeling of water structure in nano-pores between brucite (001) surfaces. Geochimica et Cosmochimica Acta, 2004, 68: 3351-3365.
DOI: 10.1016/j.gca.2004.02.016
Google Scholar
[16]
Wang, J. Effects of substrate structure and composition on the structure, dynamics and energetics of water at mineral surfaces: A molecular dynamics modeling study. Geochimica et Cosmochimica Acta, 2006, 70: 562-582.
DOI: 10.1016/j.gca.2005.10.006
Google Scholar
[17]
Yu, P. and Kirkpatrick, R.J. 35Cl NMR relaxation study of cement hydrate suspensions. Cement and Concrete Research, 2001, 31: 1479-1485.
DOI: 10.1016/s0008-8846(01)00595-6
Google Scholar
[18]
Nawa, T. Adsorption of chloride ions on the C-S-H and C-A-S-H. 14th ICCC, Beijing, (2015).
Google Scholar