[1]
A.V. Saetta, B.A. Schrefler, R.V. Vitaliani, The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials, Cem. Concr. Res. 23(4) (1993) 761-772.
DOI: 10.1016/0008-8846(93)90030-d
Google Scholar
[2]
F. Vodák, K. Trtík, O. Kapičková, Š. Hošková, P. Demo, The effect of temperature on strength-porosity relationship for concrete, Constr. Build. Mater. 18(7) (2004) 529-534.
DOI: 10.1016/j.conbuildmat.2004.04.009
Google Scholar
[3]
T. Liu, R.W. Weyers, Modeling the dynamic corrosion process in chloride contaminated concrete structures, Cem. Concr. Res. 28(3) (1998) 365-379.
DOI: 10.1016/s0008-8846(98)00259-2
Google Scholar
[4]
E. Samson, J. Marchand, Modeling the effect of temperature on ionic transport in cementitious materials, Cem. Concr. Res. 37(3) (2007) 455-468.
DOI: 10.1016/j.cemconres.2006.11.008
Google Scholar
[5]
S. Caré, Effect of temperature on porosity and on chloride diffusion in cement pastes, Constr. Build. Mater. 22(7) (2008) 1560-1573.
DOI: 10.1016/j.conbuildmat.2007.03.018
Google Scholar
[6]
T.S. Nguyen, S. Lorente, M. Carcasses, Effect of the environment temperature on the chloride diffusion through CEM-I and CEM-V mortars: an experimental study, Constr. Build. Mater. 23(2) (2009) 795-803.
DOI: 10.1016/j.conbuildmat.2008.03.004
Google Scholar
[7]
M.M. Nassar, The effect of environmental temperature on the corrosion of reinforced concrete, Corros. Prev. Control. 44(6) (1997) 167-172.
Google Scholar
[8]
V. Živica, L. Krajči, L. Bágel, M. Vargová, Significance of the ambient temperature and the steel material in the process of concrete reinforcement corrosion, Constr. Build. Mater. 11(2) (1997) 99-103.
DOI: 10.1016/s0950-0618(97)00001-9
Google Scholar
[9]
R. Lyons, M. Ing, S. Austin, Influence of diurnal and seasonal temperature variations on the detection of corrosion in reinforced concrete by acoustic emission, Corros. Sci. 47(2) (2005) 413-433.
DOI: 10.1016/j.corsci.2004.06.010
Google Scholar
[10]
M. Pour-Ghaz, O.B. Isgor, P. Ghods, The effect of temperature on the corrosion of steel in concrete. Part 1: simulated polarization resistance tests and model development, Corros. Sci. 51(2) (2009) 415-425.
DOI: 10.1016/j.corsci.2008.10.034
Google Scholar
[11]
M. Pour-Ghaz, O.B. Isgor, P. Ghods, The effect of temperature on the corrosion of steel in concrete. Part 2: model verification and parametric study, Corros. Sci. 51(2) (2009) 426-433.
DOI: 10.1016/j.corsci.2008.10.036
Google Scholar
[12]
A. Neville, Chloride attack of reinforced concrete: an overview, Mater. Struct. 28(2) (1995) 63-70.
Google Scholar
[13]
V.G. Papadakis, C.G. Vayenas, M.N. Fardis, Physical and chemical characteristics affecting the durability of concrete, ACI Mater. J. 88(2) (1991) 186-196.
Google Scholar
[14]
Life-365. Life-365 service life prediction model and computer program for predicting the service life and life-cycle cost of reinforced concrete exposed to chlorides, Version 2. 1, (2012).
Google Scholar
[15]
Y.S. Ji, Y.S. Yuan, J.L. Shen, S.P. Shao, Q. Li, Model for predicting steel corrosion rates of concrete rebar over time, J. China University of Mining & Technology. 40(3) (2011) 339-344 (in Chinese).
Google Scholar
[16]
C. Andrade, C. Alonso, J. Sarría, Corrosion rate evolution in concrete structures exposed to the atmosphere, Cem. Concr. Compos. 24(1) (2002) 55-64.
DOI: 10.1016/s0958-9465(01)00026-9
Google Scholar
[17]
Y.S. Yuan, J.H. Jiang, Prediction of temperature response in concrete in a natural climate environment, Constr. Build. Mater. 25(8) (2011) 3159-3167.
Google Scholar
[18]
W.P. Zhang, H.G. Min, X.L. Gu, Y. Xi, Y.S. Xing, Mesoscale model for thermal conductivity of concrete, Constr. Build. Mater. 98(11) (2015) 8-16.
Google Scholar
[19]
D. Campbell-Allen, C.P. Thorne, The thermal conductivity of concrete, Mag. Concr. Res. 15(43) (1963) 39-48.
Google Scholar
[20]
T.Z. Harmathy, Thermal properties of concrete at elevated temperature, J. Mater. 5(1) (1970) 47-74.
Google Scholar
[21]
T.Z. Harmathy, L.W. Allen, Thermal properties of selected masonry unit concretes, ACI J. Proc. 70(2) (1973) 132-142.
Google Scholar
[22]
Y.S. Xu, D.D.L. Chung, Increasing the specific heat of cement paste by admixture surface treatments, Cem. Concr. Res. 29(7) (1999) 1117-1121.
DOI: 10.1016/s0008-8846(99)00080-0
Google Scholar
[23]
M.I. Khan, Factors affecting the thermal properties of concrete and applicability of its prediction models, Build. Environ. 37(6) (2002) 607-614.
DOI: 10.1016/s0360-1323(01)00061-0
Google Scholar
[24]
K. Kim, S. Jeon, J. Kim, S. Yang, An experimental study on thermal conductivity of concrete, Cem. Concr. Res. 33(3) (2003) 363-371.
Google Scholar