[1]
Assessment, Design and Repair of Fire-Damaged Concrete Structures, Technical Report No. 68, The Concrete Society, London, United Kingdom, (2008).
Google Scholar
[2]
Fire design of concrete structures – structural behavior and assessment,. State-of-art report prepared by Task Group 4. 3, Fire design of concrete structures, FIB, July 2008, p.209.
Google Scholar
[3]
Felicetti, R., Colombo, M., New NDT techniques for the assessment of fire-damaged concrete structures, Fire Safety Journal, Vol. 42, Issues 6-7, Sept. -Oct. 2007, pp.461-472.
DOI: 10.1016/j.firesaf.2006.09.002
Google Scholar
[4]
Chi-Sun Poon, Salman Azhar, Mike Anson, Yuk-Lung Wong, Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures, Cement and Concrete Research 31 (2001) 1291–1300.
DOI: 10.1016/s0008-8846(01)00580-4
Google Scholar
[5]
Takuro Matsumura, Koji Shirai, Toshiari Saegusa, Verification method for durability of reinforced concrete structures subjected to salt attack under high temperature conditions, Nuclear Engineering and Design 238 (2008) 1181–1188.
DOI: 10.1016/j.nucengdes.2007.03.032
Google Scholar
[6]
NF P18-459 (2010). Essai Pour Béton Durci-Essai de Porosité et de Masse volumique, French Standard, NF P18-459, MARS (2010).
Google Scholar
[7]
Kollek, J. J. (1989). The Determination of the Permeability of Concrete to Oxygen by the Cembureau Method - A Recommendation, Materials and Structures (1989), 22, pp.225-230.
DOI: 10.1007/bf02472192
Google Scholar
[8]
Klinkenberg, L. J. (1941). The Permeability of Porous Media to Liquid and Gases, American Petroleum Institute, Drilling and Production Practice (1941), pp.200-213.
Google Scholar
[9]
AFREM (1997). Compte rendu des journées techniques AFPC-AFREM Durabilité des bétons. Laboratoire Matériaux de Durabilité des Constructions, Institut national des sciences appliquées, Université Paul Sabatier, Toulouse, Décembre (1997).
DOI: 10.21926/rpm.2102026
Google Scholar
[10]
A. Bouguerra, A. Ledhem, F. de Barquin, R.M. Dheilly, and M. Que´neudec, Effect of microstructure on the mechanical and thermal properties of lightweight concrete prepared from clay, cement and wood aggregates, Cement and Concrete Research, Vol. 28, No. 8, p.1179–1190, (1998).
DOI: 10.1016/s0008-8846(98)00075-1
Google Scholar
[11]
Xudong Chen, Shengxing Wu, Jikai Zhou, Influence of porosity on compressive and tensile strength of cement mortar, Construction and Building Materials 40 (2013) 869–874.
DOI: 10.1016/j.conbuildmat.2012.11.072
Google Scholar
[12]
Y.N. Chan, X. Luob, W. Sun, Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800 °C, Cement and Concrete Research 30 (2000) 247–251.
DOI: 10.1016/s0008-8846(99)00240-9
Google Scholar
[13]
Chi-Sun Poon, Salman Azhar, Mike Anson, Yuk-Lung Wong, Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures, Cement and Concrete Research 31 (2001) 1291–1300.
DOI: 10.1016/s0008-8846(01)00580-4
Google Scholar
[14]
Hasselman, Fulrath. Effect of small fraction of spherical porosity on elastic moduli of glass. J Am Ceram Soc 1964; 47: 52–3.
DOI: 10.1111/j.1151-2916.1964.tb14644.x
Google Scholar
[15]
Balshin MY. Relation of mechanical properties of powder metals and their porosity and the ultimate properties of porous metal–ceramic materials,. DoklAkad SSSR 1949; 67(5): 831–4.
Google Scholar
[16]
Ryshkevitch R. Compression strength of porous sintered alumina and zirconia,. J Am Ceram Soc 1953; 36(2): 65–8.
Google Scholar
[17]
Schiller KK. Strength of porous materials,. Cem Concr Res 1971; 1: 419–22.
Google Scholar
[18]
Lian C., Zhuge Y., Beecham S., The relationship between porosity and strength for porous concrete, Construction and Building Materials 25 (2011) 4294–4298.
DOI: 10.1016/j.conbuildmat.2011.05.005
Google Scholar