[1]
H. F. W. Taylor, Cement chemistry, Library (Lond)., (1990).
Google Scholar
[2]
O. K. Kjellsen and J. Detwiller, Reaction kinetics of portland cement mortars hydrated at different temperatures, Cem. Concr. Res., vol. 22, p.112–120, (1992).
DOI: 10.1016/0008-8846(92)90141-h
Google Scholar
[3]
A. M. Neville, Properties of Concrete. Pearson Education Limited, (2002).
Google Scholar
[4]
I. Chu, S. H. Kwon, M. N. Amin, and J. K. Kim, Estimation of temperature effects on autogenous shrinkage of concrete by a new prediction model, Constr. Build. Mater., vol. 35, p.171–182, (2012).
DOI: 10.1016/j.conbuildmat.2012.03.005
Google Scholar
[5]
O. M. Jensen and P. F. Hansen, Water-entrained cement-based materials I . Principle and theoretical background, vol. 31, p.1–13, (2000).
Google Scholar
[6]
D. P. Bentz, P. Lura, and J. W. Roberts, Mixture proportioning for internal curing, Concr. Int., vol. 27, no. 2, p.35–40, (2005).
Google Scholar
[7]
A. Bentur, S. I. Igarashi, and K. Kovler, Prevention of autogenous shrinkage in high-strength concrete by internal curing using wet lightweight aggregates, Cem. Concr. Res., vol. 31, p.1587–1591, (2001).
DOI: 10.1016/s0008-8846(01)00608-1
Google Scholar
[8]
R. Henkensiefken, J. Castro, D. Bentz, T. Nantung, and J. Weiss, Water absorption in internally cured mortar made with water-filled lightweight aggregate, Cem. Concr. Res., vol. 39, no. 10, p.883–892, (2009).
DOI: 10.1016/j.cemconres.2009.06.009
Google Scholar
[9]
P. A. Savva and M. F. Petrou, High-Absorptive Normal-Weight Aggregates used as Internal Curing Agent, in 27th Biennial National Conference of the Concrete Institute of Australia in conjuction with the 69th RILEM week, 2015, p.1305–1313.
Google Scholar
[10]
P. A. Savva and M. F. Petrou, A new approach for internal curing of high performance concrete to reduce early-age volume variations, in Concrete Repair, Rehabilitation and Retrofitting IV, Leipzig, Germany, 2015, p.435–441.
DOI: 10.1201/b18972-61
Google Scholar
[11]
P. Iqieger, Effect of Mixing and Curing on Concrete Strength.
Google Scholar
[12]
S. Ahmad and A. Nazir, Investigation on extreme weather concreting, (2004).
Google Scholar
[13]
S. N. Shoukry, G. W. William, B. Downie, and M. Y. Riad, Effect of moisture and temperature on the mechanical properties of concrete, Constr. Build. Mater., vol. 25, no. 2, p.688–696, (2011).
DOI: 10.1016/j.conbuildmat.2010.07.020
Google Scholar
[14]
I. Benoudjafer, M. Merbouh, B. Labbaci, and A. Hamouine, Contribution to the experimental study of the concrete behavior in its climatic environment, Energy Procedia, vol. 36, p.1320–1327, (2013).
DOI: 10.1016/j.egypro.2013.07.150
Google Scholar
[15]
B. Bappa, K. Paul, G. C. Saha, K. K. Saha, and M. H. Rashid, Effect of Casting Temperature on Bond Stress of Reinforced Concrete Structure, vol. 13, no. 2, (2013).
Google Scholar
[16]
R. G. Burg, The Influence of Casting and Curing Temperature on the Properties of Fresh and Hardened Concrete, p.18, (1996).
Google Scholar
[17]
P. D. Bentz and K. A. Snyder, Protected paste volume in concrete Extension to internal curing using saturated lightweight fine aggregates, Cem. Concr. Res., vol. 29, p.1863–1867, (1999).
DOI: 10.1016/s0008-8846(99)00178-7
Google Scholar
[18]
T. Zhang, P. Gao, R. Luo, Y. Guo, J. Wei, and Q. Yu, Measurement of chemical shrinkage of cement paste: Comparison study of ASTM C 1608 and an improved method, Constr. Build. Mater., vol. 48, p.662–669, (2013).
DOI: 10.1016/j.conbuildmat.2013.07.086
Google Scholar
[19]
America Concrete Institute, Standard Practice for Selecting Proportions for Normal Heavyweight, and Mass Concrete, ACI 211. 1-91, Man. Concr. Pract., no. Reapproved, p.1–38, (2002).
Google Scholar
[20]
ASTM C 1202, T. Drilled, C. Concrete, and B. Statements, Standard Test Method for Electrical Indication of Concrete ' s Ability to Resist Chloride, Annu. B. ASTM Stand., no. 95 mm, p.1–6, (2008).
Google Scholar
[21]
K. a. Riding, J. L. Poole, A. K. Schindler, M. C. G. Juenger, and K. J. Folliard, Simplified concrete resistivity and rapid chloride permeability test method, ACI Mater. J., vol. 105, no. 105, p.390–394, (2008).
DOI: 10.14359/19901
Google Scholar
[22]
D. P. Bentz, A virtual rapid chloride permeability test, Cem. Concr. Compos., vol. 29, p.723–731, (2007).
Google Scholar
[23]
M. Wyrzykowski and P. Lura, Controlling the coefficient of thermal expansion of cementitious materials - A new application for superabsorbent polymers, Cem. Concr. Compos., vol. 35, no. 1, p.49–58, (2013).
DOI: 10.1016/j.cemconcomp.2012.08.010
Google Scholar
[24]
M. T. Hasholt, M. H. S. Jespersen, and O. M. Jensen, Mechanical properties of Concrete with SAP Part II: Modulus of Elasticity, no. August, (2010).
Google Scholar