UHPC and FRC in Severe Environmental Conditions

Article Preview

Abstract:

Structure and properties of cement composite are time-varying characteristics, depending among others on environmental conditions. The key idea is a struggle for complex research of joint effect of physical, chemical and dynamic loads on the internal structure [1] of cement composite and understanding the correlation between changes in microstructure and macro-scale properties [2, 3]. During the experimental program, specimens will be exposed to combined influence of freeze-thaw cycles [4,5,6], aggressive chemical agents [7] and dynamic loading [8]. The aim is to create a theoretical basis for design of effective cement composites meant to be used in severe environmental conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

412-419

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Erdem, S., Impact load-induced microstructural damage of concrete made with unconventional aggregates, Ph.D. thesis. University of Nottingham, Great Britain, (2012).

Google Scholar

[2] Zheng, D., Quingbin, L., Concrete strength under combine load, 11th International Conference on Fracture – abstract book. Torino, Italy, 2005. ISBN 978-88-903188-2-5.

Google Scholar

[3] Rossi, P., Strain rate effects in concrete structures: the LCPC experience, Materials and Structures, Vol. 30, Mar. 1997, p.54 – 62.

DOI: 10.1007/bf02539277

Google Scholar

[4] ČSN 73 13 22 Stanovení mrazuvzdornosti betonu. ÚNM, Prague, Czech Republic, (1968).

Google Scholar

[5] ČSN 73 1380 Zkoušení odolnosti betonu proti zmrazování a rozmrazování – Porušení vnitřní struktury. ČNI, Prague, Czech Republic, (2007).

Google Scholar

[6] Tanesi, J. and Meininger, R., Freeze-Thaw Resistance of Concrete With Marginal Air Content, Report for Federal Highway Administration, U.S. Department of Transportation, 2006. 96 p.

DOI: 10.3141/2020-08

Google Scholar

[7] ČSN 73 1326 Stanovení odolnosti povrchu cementového betonu proti působení vody a chemických rozmrazovacích látek. ÚNM, Prague, Czech Republic, (1984).

Google Scholar

[8] Wakabayashi, M., Nakamura, T., Yoshida, N., Iwai, S., Watanabe, Y., Dynamic loading effects on the structural performance of concrete and steel materials and beams, Proceedings of the 7th conference on earthquake engineering. Istanbul, Turkey, 1980. Vol. 6, p.271.

Google Scholar

[9] Kohoutková, A., Vodička, J., Fládr, J., Drátkobeton vysokých pevností s ocelovými vlákny vyrobenými z odpadu, Proceedings of Konference Technika ochrany prostredia – TOP. Bratislava, Slovakia, 2012. p.225 – 230. ISBN 978-80-227-3723-4.

Google Scholar

[10] EN 12390-2, Hardened Concrete - Part 2: Making and curing specimens for strength tests, German version.

Google Scholar

[11] Dobiáš, D., Pernicová, R., Diffusion of Chloride Ions in Ultra High Performance Concrete, Advanced Materials Research, 2015, Vol. 1106, pp.21-24.

DOI: 10.4028/www.scientific.net/amr.1106.21

Google Scholar