Design of a Hybrid Lightweight Energy Absorber

Article Preview

Abstract:

Among several problems which might affect the passenger safety during an accidental crash event, the deceleration pulse is one of the most critical. For this reason vehicles are designed to convert the Kinetic Energy occurring in an impact in plastic deformation and to spread the loads due to such events through designed structural load paths. An important role in the kinetic energy absorbing at high velocities is played by the energy absorbers. The energy absorption capability of a crashworthy element or system is largely affected by material properties and structural design. This work deals with a numerical investigation on the energy absorbing capability of a new concept of energy absorber made out of the combination of metal parts and carbon composite materials. A numerical investigation on the parameters which increase the crash performance as well as decrease the weight of such device has been presented in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

321-324

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Lamanna, F. Caputo, A. Soprano. Numerical investigation on the structural behavior of a composite impact absorber. Key Engineering Materials 417-418 (2010) 685-688.

DOI: 10.4028/www.scientific.net/kem.417-418.685

Google Scholar

[2] F. Caputo, G. Lamanna, D. Scarano, A. Soprano. Numerical sensitivity analysis of a composite impact absorber. AIP Conference Proceedings 1042 (2008) 184-186.

DOI: 10.1063/1.2988994

Google Scholar

[3] F. Caputo, G. Lamanna, A. Soprano. Energy absorption capabilities of a square tube system. Key Engineering Materials 488-489 (2012) 561-564.

DOI: 10.4028/www.scientific.net/kem.488-489.561

Google Scholar

[4] F. Caputo, A. Soprano, G. Monacelli. Stochastic design improvement of an impact absorber. Latin American Journal of Solids and Structures 3(1) 2006 41-58.

Google Scholar

[5] F. Caputo, A. De Luca, G. Lamanna, V. Lopresto, A. Riccio: Numerical investigation of onset and evolution of LVI damages in Carbon–Epoxy plates. Compos: Part B: Eng 68 (2015) 385–391.

DOI: 10.1016/j.compositesb.2014.09.009

Google Scholar

[6] F. Caputo, G. Lamanna, A. De Luca, V. Lopresto: Numerical simulation of LVI test onto composite plates. AIP Conference Proceeding 1599 (2014) 335–8.

DOI: 10.1063/1.4876846

Google Scholar

[7] A. Riccio, A. De Luca, G. Di Felice, F. Caputo: Modelling the simulation of impact induced damage onset and evolution in composites. Compos: Part B: Eng. 66 (2014) 340–7.

DOI: 10.1016/j.compositesb.2014.05.024

Google Scholar

[8] F. Caputo, A. De Luca, G. Lamanna, R. Borrelli, U. Mercurio: Numerical study for the structural analysis of composite laminates subjected to low velocity impact. Composites Part B: Engineering 67 (2014) 296–302.

DOI: 10.1016/j.compositesb.2014.07.011

Google Scholar

[9] F. Caputo, A. De Luca, G. Lamanna, R. Borrelli, F. Franchitti: Global-local FE Simulation of a plate LVI test. SDHM Structural Durability and Health Monitoring 9, 3 (2013) 253-267.

DOI: 10.32604/sdhm.2013.009.253

Google Scholar

[10] Z. Hashin: Failure criteria for unidirectional composites. Journal Applied Mechanism 47 (1980) 329-334.

DOI: 10.1115/1.3153664

Google Scholar

[11] F. Caputo, A. De Luca, R. Sepe: Numerical study of the structural behaviour of impacted composite laminates subjected to compression load. Compos Part B: Eng (2015) 79 456-465.

DOI: 10.1016/j.compositesb.2015.05.007

Google Scholar

[11] A. Sellitto, R. Borrelli, F. Caputo, A. Riccio, F. Scaramuzzino: Application of the mesh superposition technique to the study of delaminations in composites thin plates. Key Engineering Materials 525-526 (2012) 533-536.

DOI: 10.4028/www.scientific.net/kem.525-526.533

Google Scholar