Enhancing the Strain-Hardening Behavior of Hadfield Steel Using Ladle Treatment Technique

Article Preview

Abstract:

Ladle treatment of molten Hadfield steel considers as the new effective technique for producing Hadfield steel instead of conventional heat treatment process. New eutectic is formed as a result of the ladle treatment process. In this research, the strain-hardening property of the four grades of Hadfield steel containing granular new eutectic phase has been investigated, and compared with the conventional Hadfield steel. Optical and scanning electron microscope reveal that slip bands fractions vary through the five grades of steel as a result of deformation. XRD observation refers to the austenite phase is still the dominant phase through the whole five grades of steel after deformation. The results of the compression and hardness tests clarify that the new granular eutectic phase has a significant effect on the strain-hardening behavior, austenite stability. The nodularity of new eutectic phase is a considerable parameter in the function of yield strength, and hardness increment as well.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

302-310

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] ASTM, A128 (Standard Specification for Steel Castings, Austenitic Manganese, United States, 2003).

Google Scholar

[2] G. Liang, Z. Xu, J. Lietal, Acta Metal. Sin. 39(5) (2003) 550.

Google Scholar

[3] R. Fadhila, A.G. Jaharah, M.Z. Omar, C.H.C. Horan, M.I. Ghazali, A. Manof, C.H. Azhari, Int. J. Mech. Mater. Eng. 2 (2007) 150-153.

Google Scholar

[4] T.H. Middleham, Alloy. Met. Rev, 12 (1964) 112.

Google Scholar

[5] V.I. Grigorkin, G.V. Korotushenko, Met. Sci. Heat Treat. Met. 2 (1968) 130-132.

Google Scholar

[6] A. Sundstorm, J. Rendon, M. Oisson, Wear. 250 (2001) 744-745.

Google Scholar

[7] L. Povilaitis, Metall. Rep., Canac International, Montreal, January 1998, p.9.

Google Scholar

[8] S.R. Allahkaram, IJE Trans. B: Appl. 21 No. 1 (2008).

Google Scholar

[9] D.K. Subramanya, A.E. Swansiger, H.S. Avery, 10th Edition, ASM Metal. Handb., Vol. 1, (1991).

Google Scholar

[10] A.K. Srivastava, K. Das, Mater. Sci. 43 (2008) 5654-5658.

Google Scholar

[11] M. B. Limooei, S. Hosseini, Optimization Of Properties And Structure With Addition Of Titanium In Hadfield Steel, Met. 5 (2012) 23-25.

Google Scholar

[12] Xu Zhenming, Mater. Sci. Eng. A. 335 (2002) 109-115.

Google Scholar

[13] Q.C. Jiang, Q. Guan, Y. Zhao, Z. Xu, S. Wang, Y. Zhao, F. Rong, Z. He, Sci. and Technol. of adv. Mater. 2 (2001) 253-255.

Google Scholar

[14] Gao. FeiLiang, Chang. Jiang Song, Xiang. Yang Liu, Jian. Guoli, J. of Mater. Sci. 40 (2005) 2081-(2084).

Google Scholar

[15] I. Karaman1, H. Sehitoglu1, Y.I. Chumlyakov, H.J. Maier, I.V. Kireeva, Scripta Mater. 44 (2001) 337–343.

Google Scholar

[16] F.C. Liu, B.L. V, F.C. Zhang, S. yang, Mater. Lett. 65 (2011) 2333-2336.

Google Scholar

[17] M.K. ElFawkhry, A.M. Fathy, M.M. Eissa, New Energy Saving Technology for Producing Hadfield Steel to High Gouging Applications, Steel Res Int. 85 (2014) No. 9999.

DOI: 10.1002/srin.201300388

Google Scholar

[18] T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, S. Koike, M. Ichihara, Plastic Deformation and Martensitic Transformation in an Iron-Base Alloy, Scripta Metall. 10(4) (1976) 353-358.

DOI: 10.1016/0036-9748(76)90091-0

Google Scholar

[19] M. Sheikholeslami, S. M. A Boutorabi, Iran. J. Mater Sci Eng. 9 (2012).

Google Scholar

[20] G.E. Dieter, MC Graw-Hill book company, London, (1988).

Google Scholar

[21] D.K. Subramanyam, Met. Handb. Edition 10., volume 1, Properties and Selection: Stainless Steels, Tool Materials and Specialpurpose Metals, ASM Intern., (1995).

Google Scholar

[22] G.F. Liang, Z.M. Xu, Q.C. Jiang, J.G. Li, Acta Metall. Sin. 16 (2003) 449-456.

Google Scholar

[23] Torstensjogren, PH.D., Dep. of Manag. and Eng. div. of Eng. Mater., Sweden (2007).

Google Scholar

[24] S.R. Allahkaram, IJE Trans. B: application 21 (2008) 55-64.

Google Scholar

[25] Z. Xu, L. Li, Mater. Sci. Eng. A. 428 (2006) 256-261.

Google Scholar

[26] M. El Fawkhry, A.M. Fathy, M.M. Eissa, Effect of Ca-Si modifiers on the carbide precipitation of as cast Hadfield steel, Steel Res Int. 84 (2013).

DOI: 10.1002/srin.201300068

Google Scholar