Hot Deformation and Microstructural Characteristics of Nitrogen Enhanced 316L Stainless Steel

Article Preview

Abstract:

Dynamic recrystallization (DRX) in 316LN austenitic stainless steel with 0.14wt% nitrogen has been studied using hot isothermal compression tests carried out in temperature range 1073-1423K and strain rate range 0.001 - 10 s-1. Critical strain and stress for DRX has been characterized using experimental data. Analysis of results shows that for the entire domain the critical stress is directly proportional to peak stress. However, no clear relationship between εc and εp prevails over the entire tested domain. Dynamic Recrystallized (DRX) grains are quantified by GOS and KAM maps. The four stages of DRX progression have been identified using the correlation between GOS and critical strain at different deformation conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

317-322

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.L. Mannan, S.C. Chetal, Baldev Raj, S.B. Bhoje , Selection of materials for prototype fast breeder reactor , Trans. IIM, 56 (2003), 155–178.

Google Scholar

[2] V.G. Gavriljuk , High nitrogen steels. Springer , (1999).

Google Scholar

[3] V. Ganesan, M.D. Mathew, K. Bhanu Sankara Rao, Influence of tensile properties of 316LN SS, Mater. Sci. Tech. 25 (2009) 614-618.

DOI: 10.1179/174328408x317066

Google Scholar

[4] M.D. Mathew, K. Laha and V. Ganesan, Improving creep strength of 316L stainless steel by alloying with nitrogen, Mater. Sci. Eng. A. 535 (2012) 76-83.

DOI: 10.1016/j.msea.2011.12.044

Google Scholar

[5] D. Samantaray, S Mandal, V Kumar, SK Albert, AK Bhaduri, T Jayakumar, Optimization of processing parameters based on high temperature flow behavior and microstructural evolution of a nitrogen enhanced 316L(N) stainless steel, Mater. Sci. Eng. A. 552 (2012).

DOI: 10.1016/j.msea.2012.05.036

Google Scholar

[6] D. Samantaray, S. Mandal, C. Phaniraj, A.K. Bhaduri, Flow behavior and microstructural evolution during hot deformation of AISI Type 316L(N) austenitic stainless steel, Mater. Sci. Eng. A. 528 (2011) 8565-8572.

DOI: 10.1016/j.msea.2011.08.012

Google Scholar

[7] D. Samantaray, S. Mandal and A.K. Bhaduri, A critical comparison of various data processing methods in simple uni-axial compression testing, Mater. & Des., 32 (2011) 2797-2802.

DOI: 10.1016/j.matdes.2011.01.007

Google Scholar

[8] F. Bachmann, R. Hielscher, H. Schaeben, Grain detection from 2d and 3d EBSD data- specification of the MTEX algorithm, Ultramicroscopy, 111 (2011) 1720-1733.

DOI: 10.1016/j.ultramic.2011.08.002

Google Scholar

[9] D. Samantaray, S. Mandal, M. Jayalakshmi, C.N. Athreya, A.K. Bhaduri, V.S. Sharma, New insights into the relationship between dynamic softening phenoma and efficiency of hot working domains of a nitrogen enhanced 316L(N) stainless steel, Mater. Sci. Eng. A. 598 (2014).

DOI: 10.1016/j.msea.2013.12.105

Google Scholar

[10] J.J. Jonas, X. Quelennec, L. Jiang, E. Martin, The avarmi kinetics of dynamic recrystallization, Acta. Mater. 57 (2009) 2748-2756.

DOI: 10.1016/j.actamat.2009.02.033

Google Scholar

[11] C. Ghosh, V.V. Basabe, J.J. Jonas, Determination of the critical strains for the initiation of dynamic transformation and dynamic recrystallization in four steels of increasing carbon contents, Steel Res. Int. 84 (2013) 490-494.

DOI: 10.1002/srin.201200188

Google Scholar

[12] A. Sarkar, A. Marchattiwar, J.K. Chakravartty, B.P. Kashyap, Kinetics of dynamic recrystallization in Ti- modified 15Cr-15Ni-2Mo austenitic stainless steel, J. Nuc. Mater. 432 (2013) 9-15.

DOI: 10.1016/j.jnucmat.2012.07.020

Google Scholar

[13] M. Ullmann, M. Schmidtchen, R. Kawalla, Dynamic recrystallization of twin roll cast AZ31 strips during hot deformation, Key Eng. Mater. 622-623 (2014) 569-574.

DOI: 10.4028/www.scientific.net/kem.622-623.569

Google Scholar

[14] D.P. Field, L.T. Bradford, M.M. Nowell, TM Lillo, The role of annealing twins during recrystallization of Cu, Acta Mater. 55 (2007) 4233-4241.

DOI: 10.1016/j.actamat.2007.03.021

Google Scholar

[15] H. Zhang, K. Zhang, H. Ahou, Z. Lu, C. Zhao, X. Yang, Effect of strain rate on microstructure evolution of a nickel based super alloy during hot deformation, Mat. Des., 80 (2015) 51-62.

DOI: 10.1016/j.matdes.2015.05.004

Google Scholar

[16] T. Sakai, M. Ohashi, Dislocation substructures developed during dynamic recrystallization in polycrystalline nickel, Mater. Sci. Tech. 6 (1990) 1251-1257.

DOI: 10.1179/mst.1990.6.12.1251

Google Scholar