[1]
S.L. Mannan, S.C. Chetal, Baldev Raj, S.B. Bhoje , Selection of materials for prototype fast breeder reactor , Trans. IIM, 56 (2003), 155–178.
Google Scholar
[2]
V.G. Gavriljuk , High nitrogen steels. Springer , (1999).
Google Scholar
[3]
V. Ganesan, M.D. Mathew, K. Bhanu Sankara Rao, Influence of tensile properties of 316LN SS, Mater. Sci. Tech. 25 (2009) 614-618.
DOI: 10.1179/174328408x317066
Google Scholar
[4]
M.D. Mathew, K. Laha and V. Ganesan, Improving creep strength of 316L stainless steel by alloying with nitrogen, Mater. Sci. Eng. A. 535 (2012) 76-83.
DOI: 10.1016/j.msea.2011.12.044
Google Scholar
[5]
D. Samantaray, S Mandal, V Kumar, SK Albert, AK Bhaduri, T Jayakumar, Optimization of processing parameters based on high temperature flow behavior and microstructural evolution of a nitrogen enhanced 316L(N) stainless steel, Mater. Sci. Eng. A. 552 (2012).
DOI: 10.1016/j.msea.2012.05.036
Google Scholar
[6]
D. Samantaray, S. Mandal, C. Phaniraj, A.K. Bhaduri, Flow behavior and microstructural evolution during hot deformation of AISI Type 316L(N) austenitic stainless steel, Mater. Sci. Eng. A. 528 (2011) 8565-8572.
DOI: 10.1016/j.msea.2011.08.012
Google Scholar
[7]
D. Samantaray, S. Mandal and A.K. Bhaduri, A critical comparison of various data processing methods in simple uni-axial compression testing, Mater. & Des., 32 (2011) 2797-2802.
DOI: 10.1016/j.matdes.2011.01.007
Google Scholar
[8]
F. Bachmann, R. Hielscher, H. Schaeben, Grain detection from 2d and 3d EBSD data- specification of the MTEX algorithm, Ultramicroscopy, 111 (2011) 1720-1733.
DOI: 10.1016/j.ultramic.2011.08.002
Google Scholar
[9]
D. Samantaray, S. Mandal, M. Jayalakshmi, C.N. Athreya, A.K. Bhaduri, V.S. Sharma, New insights into the relationship between dynamic softening phenoma and efficiency of hot working domains of a nitrogen enhanced 316L(N) stainless steel, Mater. Sci. Eng. A. 598 (2014).
DOI: 10.1016/j.msea.2013.12.105
Google Scholar
[10]
J.J. Jonas, X. Quelennec, L. Jiang, E. Martin, The avarmi kinetics of dynamic recrystallization, Acta. Mater. 57 (2009) 2748-2756.
DOI: 10.1016/j.actamat.2009.02.033
Google Scholar
[11]
C. Ghosh, V.V. Basabe, J.J. Jonas, Determination of the critical strains for the initiation of dynamic transformation and dynamic recrystallization in four steels of increasing carbon contents, Steel Res. Int. 84 (2013) 490-494.
DOI: 10.1002/srin.201200188
Google Scholar
[12]
A. Sarkar, A. Marchattiwar, J.K. Chakravartty, B.P. Kashyap, Kinetics of dynamic recrystallization in Ti- modified 15Cr-15Ni-2Mo austenitic stainless steel, J. Nuc. Mater. 432 (2013) 9-15.
DOI: 10.1016/j.jnucmat.2012.07.020
Google Scholar
[13]
M. Ullmann, M. Schmidtchen, R. Kawalla, Dynamic recrystallization of twin roll cast AZ31 strips during hot deformation, Key Eng. Mater. 622-623 (2014) 569-574.
DOI: 10.4028/www.scientific.net/kem.622-623.569
Google Scholar
[14]
D.P. Field, L.T. Bradford, M.M. Nowell, TM Lillo, The role of annealing twins during recrystallization of Cu, Acta Mater. 55 (2007) 4233-4241.
DOI: 10.1016/j.actamat.2007.03.021
Google Scholar
[15]
H. Zhang, K. Zhang, H. Ahou, Z. Lu, C. Zhao, X. Yang, Effect of strain rate on microstructure evolution of a nickel based super alloy during hot deformation, Mat. Des., 80 (2015) 51-62.
DOI: 10.1016/j.matdes.2015.05.004
Google Scholar
[16]
T. Sakai, M. Ohashi, Dislocation substructures developed during dynamic recrystallization in polycrystalline nickel, Mater. Sci. Tech. 6 (1990) 1251-1257.
DOI: 10.1179/mst.1990.6.12.1251
Google Scholar