[1]
S.G. Jansto, Niobium-bearing steel development for value-added structural applications, New Developments on Metallurgy and Applications of High Strength Steels Conf., Buenos Aires, 2008, TMS, Warrendale, PA, pp.1313-1326.
Google Scholar
[2]
N. Isasti, D. Jorge-Badiola, M. L. Taheri, P. Uranga, Phase transformation study in Nb-Mo microalloyed steels using dilatometry and EBSD quantification, Metall. Mater. Trans. A. 44 (2013) 3552-3563.
DOI: 10.1007/s11661-013-1738-3
Google Scholar
[3]
B.M. Huang, J.R. Yang, C.Y. Huang, The synergistic effect of niobium-molybdenum additions on the microstructure of low-carbon bainitic steel, Fundamentals and applications of Mo and Nb Alloying in High Performance Steels - Vol 2, Eds. H Mohrbacher, CBMM, IMOA and TMS, 2015, pp.29-51.
Google Scholar
[4]
P. Cizek, B.P. Wynne, C.H.J. Davies, P.D. Hodgson, The Effect of Simulated Thermomechanical Processing on the Transformation Behavior and Microstructure of a Low-Carbon Mo-Nb Linepipe Steel, Metall. Mater. Trans. A. 46 (2015) 407-425.
DOI: 10.1007/s11661-014-2601-x
Google Scholar
[5]
T. Tomida, N. Imai, K. Miyata, S. Fukushima, M. Yoshida, M. Wakita, M. Etou, T. Sasaki, Y. Haraguchi, Y. Okada, Grain Refinement of C-Mn Steel to 1 µm by Rapid Cooling and Short Interval Multi-pass Hot Rolling in Stable Austenite Region, ISIJ Int 48 (2008).
DOI: 10.2355/isijinternational.48.1148
Google Scholar
[6]
H.S. Zurob, C.R. Hutchinson, Y. Brechet, G. Purdy, Modeling recrystallization of microalloyed austenite: effect of coupling recovery, precipitation and recrystallization, Acta Mater. 50 (2002) 3075-3092.
DOI: 10.1016/s1359-6454(02)00097-6
Google Scholar
[7]
P. Uranga, I. Gutiérrez, B. López, Determination of recrystallization kinetics from plane strain compression tests, Mater. Sci. Eng. A. 578 (2013) 174-180.
DOI: 10.1016/j.msea.2013.04.077
Google Scholar
[9]
G. Larzabal, N. Isasti, J.M. Rodriguez-Ibabe, P. Uranga, Relevance of time between last deformation pass and accelerated cooling on the microstructural refinement in Nb and Nb-Mo microalloyed steels, Contributed Papers from Materials Science and Technology (MS&T) 2015, October 4 – 8, 2015, Greater Columbus Convention Center, Columbus, Ohio, USA, pp.981-988.
DOI: 10.4028/www.scientific.net/kem.716.281
Google Scholar
[9]
S.K. Kim, Y.M. Kim, Y.J. Lin, N.J. Kim, Proceeding of 15th Conference On Mechanical Behaviors of Materials, Korea Institute of Metals and Materials, Seoul, Korea, 2001, pp.177-186.
Google Scholar
[10]
N. Isasti, D. Jorge-Badiola, M.L. Taheri, P. Uranga, Microstructural Features Controlling Mechanical Properties in Nb-Mo Microalloyed Steels. Part I: Yield Strength. Metall. Mater. Trans. 45A (2014) 4960-4971.
DOI: 10.1007/s11661-014-2450-7
Google Scholar
[11]
I.A. Yakubtsov, J.D. Boyd, W.J. Liu, E. Essadiqui, 42nd Mechanical Working and Steel Processing Conference, Iron and Steel Society/AIME, Toronto, ON, 2000, pp.429-39.
Google Scholar
[12]
F. B. Pickering and T. Gladman, Metallurgical Developments in Carbon Steels, Special Report No. 81, Iron and Steel Institute, London, UK (1963).
Google Scholar
[12]
A. Iza-Mendia, I. Gutiérrez, Generalization of the existing relations between microstructure and yield stress from ferrite–pearlite to high strength steels, Mater. Sci. Eng. A. 561 (2013) 40-51.
DOI: 10.1016/j.msea.2012.10.012
Google Scholar
[14]
M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Mater. Sci. Eng. A. 257 (2010) 2738-2746.
DOI: 10.1016/j.msea.2010.01.004
Google Scholar
[15]
L. P. Kubin, A. Mortensen, Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues, Scripta Mater. 48 (2003) 119-125.
DOI: 10.1016/s1359-6462(02)00335-4
Google Scholar
[16]
N. Isasti, D. Jorge-Badiola, J. Alkorta, P. Uranga, Analysis of Complex Steel Microstructures by High-Resolution EBSD, JOM 68 (2016) 215-223.
DOI: 10.1007/s11837-015-1677-0
Google Scholar
[17]
M. E. Bush, P. M. Kelly, Strengthening mechanisms in bainitic steels, Acta Met. 19 (1971) 1363-1372.
DOI: 10.1016/0001-6160(71)90074-5
Google Scholar
[18]
T. Gladman, Precipitation hardening in metals, Mater. Sci. Technol. 15 (1999) 30-36.
Google Scholar
[19]
K. Wallin, Modified tanh fitting algorithm for charpy impact data, In; Research Seminar on economical and safe application of modern steels for pressure vessels, 2003, Aachen, Germany.
Google Scholar