[1]
I. Sabirov, M. Yu. Murashkin, R.Z. Valiev, Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development, Mat. Sci. Eng. A-Struct. 560 (2013) 1-24.
DOI: 10.1016/j.msea.2012.09.020
Google Scholar
[2]
V.I. Elagin, Paths of development of high-strength and heat-resistant structural aluminum alloys in the 21st century, Met. Sci. Heat. Treat. 9 (2007) 3-11.
DOI: 10.1007/s11041-007-0081-y
Google Scholar
[3]
R.K. Islamgaliev, et al., Deformation behavior of nanostructured aluminum alloy processed by severe plastic deformation, Mat. Sci. Eng. A-Struct. 319-321 (2001) 877-881.
DOI: 10.1016/s0921-5093(01)01052-8
Google Scholar
[4]
Yu. Hailiang, et al., Advanced rolling technologies for producing ultrafine-grain/nanostructured alloys, Procedia Engineering. 81 (2014) 96-101.
DOI: 10.1016/j.proeng.2014.09.133
Google Scholar
[5]
J.K. Lee, D.N. Lee, Texture Evolution and Grain Refinement in AA1050 Aluminum Alloy Sheets Asymmetrically Rolled with Varied Shear Directions, Key Engineering Materials. 340-341 (2007) 619-626.
DOI: 10.4028/www.scientific.net/kem.340-341.619
Google Scholar
[6]
Q. Cui, K. Ohori, Grain refinement of high purity aluminum by asymmetric rolling, Mat. Sci. Tech. 16 (2000) 1095-1101.
DOI: 10.1179/026708300101507019
Google Scholar
[7]
J. Jiang, Y. Ding, F. Zuo, A. Shan, Mechanical properties and microstructures of ultrafine-grained pure aluminum by asymmetric rolling, Scripta Mater. 60 (2009) 905-908.
DOI: 10.1016/j.scriptamat.2009.02.016
Google Scholar
[8]
Loorentz, Young Gun Ko, Microstructure evolution and mechanical properties of severely deformed Al alloy processed by differential speed rolling, J. Alloy. Compd. 536S (2012) S122-S125.
DOI: 10.1016/j.jallcom.2011.12.009
Google Scholar
[9]
Loorentz, Y.G. Ko, Effect of differential speed rolling strain on microstructure and mechanical properties of nanostructured 5052 Al alloy, J. Alloy. Compd. 586 (2014) S205-S209.
DOI: 10.1016/j.jallcom.2012.10.128
Google Scholar
[10]
Ui Gu Gang, Sang Hun Lee, Won Jong Nam, The Evolution of Microstructure and Mechanical Properties of a 5052 Aluminum Alloy by the Application of Cryogenic Rolling and Warm Rolling, Mater. Trans. 50 (2009) 82-86.
DOI: 10.2320/matertrans.md200801
Google Scholar
[11]
T. Shanmugasundaram, B.S. Murty, V. Subramanya Sarma, Development of ultrafine grained high strength Al-Cu alloy by cryorolling, Scripta Mater. 54 (2006) 2013-(2017).
DOI: 10.1016/j.scriptamat.2006.03.012
Google Scholar
[12]
S.K. Panigrahi, R. Jayaganthan, Development of ultrafine grained high strength age hardenable Al 7075 alloy by cryorolling, Materials & Design. 32 (2011) 3150-3160.
DOI: 10.1016/j.matdes.2011.02.051
Google Scholar
[13]
H. Yu et al., Asymmetric cryorolling for fabrication of nanostructural aluminum sheets, Scientific Reports. 2. 772 (2012) 1-5.
Google Scholar
[14]
H. Yu et al., Mechanical properties of Al-Mg-Si alloy sheets produced using asymmetric cryorolling and ageing treatment. Mat. Sci. Eng. A-Struct. 568 (2013) 212-218.
DOI: 10.1016/j.msea.2013.01.048
Google Scholar
[15]
F. Zuo, J. Jiang, A. Shan, Shear deformation and grain refinement in pure Al by asymmetric rolling, Transactions of Nonferrous Metals Society of China, 18 (2008) 774-777.
DOI: 10.1016/s1003-6326(08)60133-8
Google Scholar
[16]
M. Sverdlik, A. Pesin, D. Pustovoytov, A. Perekhozhikh, Numerical research of shear strain in an extreme case of asymmetric rolling, Advanced Materials Research. 742 (2013) 476-481.
DOI: 10.4028/www.scientific.net/amr.742.476
Google Scholar
[17]
A. Pesin, D. Pustovoytov, Influence of Process Parameters on Distribution of Shear Strain through Sheet Thickness in Asymmetric Rolling, Key Engineering Materials. 622-623 (2014) 929-935.
DOI: 10.4028/www.scientific.net/kem.622-623.929
Google Scholar
[18]
A. Pesin, M. Chukin, A. Korchunov, D. Pustovoytov, Finite Element Modeling of Shear Strain in Rolling with Velocity Asymmetry in Multi-Roll Calibers, Key Engineering Materials. 622-623 (2014) 912-918.
DOI: 10.4028/www.scientific.net/kem.622-623.912
Google Scholar
[19]
A. Pesin, A. Korchunov, D. Pustovoytov, Numerical Study of Grain Evolution and Dislocation Density during Asymmetric Rolling of Aluminum Alloy 7075, Key Engineering Materials. 685 (2016) 162-166.
DOI: 10.4028/www.scientific.net/kem.685.162
Google Scholar
[20]
J.J. Park, Finite-element analysis of severe plastic deformation in differential-speed rolling, Comp. Mater. Sci. 100 (2015) 61-66.
DOI: 10.1016/j.commatsci.2014.09.010
Google Scholar
[21]
C.F. Hickey, Mechanical properties of titanium and aluminum alloys at cryogenic temperatures, Technical report WAL TR 340. 2/i, Watertown Arsenal Laboratories (1962).
Google Scholar
[22]
E.D. Marquardt, J.P. Le, Ray Radebaugh, Cryogenic Material Properties Database, Cryocoolers 11 (2002) 681-687.
DOI: 10.1007/0-306-47112-4_84
Google Scholar