[1]
Y.H. Ji, J.J. Park, W.J. Kim, Finite element analysis of severe deformation in Mg-3Al-1Zn sheets through differential-speed rolling with a high speed ratio, Mat. Sci. Eng. A. 454-455 (2007) 570-574.
DOI: 10.1016/j.msea.2006.11.076
Google Scholar
[2]
Y.H. Ji, J.J. Park, Development of severe plastic deformation by various asymmetric rolling processes, Mat. Sci. Eng. A. 499 (2009) 14-17.
DOI: 10.1016/j.msea.2007.11.099
Google Scholar
[3]
J. Jiang, Y. Ding, F. Zuo, A. Shan, Mechanical properties and microstructures of ultrafine-grained pure aluminum by asymmetric rolling, Scripta Mater. 60 (2009) 905-908.
DOI: 10.1016/j.scriptamat.2009.02.016
Google Scholar
[4]
F. Zuo, J. Jiang, A. Shan, Shear deformation and grain refinement in pure Al by asymmetric rolling, Transactions of Nonferrous Metals Society of China, 18 (2008) 774-777.
DOI: 10.1016/s1003-6326(08)60133-8
Google Scholar
[5]
Q. Cui, K. Ohori, Grain refinement of high purity aluminum by asymmetric rolling, Mater. Sci. Tech. 16 (2000) 1095-1101.
DOI: 10.1179/026708300101507019
Google Scholar
[6]
M. Sverdlik, A. Pesin, D. Pustovoytov, A. Perekhozhikh, Numerical research of shear strain in an extreme case of asymmetric rolling, Advanced Materials Research. 742 (2013) 476-481.
DOI: 10.4028/www.scientific.net/amr.742.476
Google Scholar
[7]
W.J. Kim, B.G. Hwang, M.J. Lee, Y.B. Park, Effect of speed-ratio on microstructure, and mechanical properties of Mg-3Al-1Zn alloy, in differential speed rolling, J. Alloy. Compd. 509 (2011) 8510-8517.
DOI: 10.1016/j.jallcom.2011.05.063
Google Scholar
[8]
A. Pesin, D. Pustovoytov, Influence of Process Parameters on Distribution of Shear Strain through Sheet Thickness in Asymmetric Rolling, Key Engineering Materials. 622-623 (2014) 929-935.
DOI: 10.4028/www.scientific.net/kem.622-623.929
Google Scholar
[9]
A. Pesin, M. Chukin, A. Korchunov, D. Pustovoytov, Finite Element Modeling of Shear Strain in Rolling with Velocity Asymmetry in Multi-Roll Calibers, Key Engineering Materials. 622-623 (2014) 912-918.
DOI: 10.4028/www.scientific.net/kem.622-623.912
Google Scholar
[10]
A. Pesin, A. Korchunov, D. Pustovoytov, Numerical Study of Grain Evolution and Dislocation Density during Asymmetric Rolling of Aluminum Alloy 7075, Key Engineering Materials. 685 (2016) 162-166.
DOI: 10.4028/www.scientific.net/kem.685.162
Google Scholar
[11]
J.J. Park, Finite-element analysis of severe plastic deformation in differential-speed rolling, Comp. Mater. Sci. 100 (2015) 61-66.
DOI: 10.1016/j.commatsci.2014.09.010
Google Scholar
[12]
Loorentz, Y.G. Ko, Effect of differential speed rolling strain on microstructure and mechanical properties of nanostructured 5052 Al alloy, J. Alloy. Compd. 586 (2014) S205-S209.
DOI: 10.1016/j.jallcom.2012.10.128
Google Scholar
[13]
J.K. Lee, D.N. Lee, Texture Evolution and Grain Refinement in AA1050 Aluminum Alloy Sheets Asymmetrically Rolled with Varied Shear Directions, Key Engineering Materials. 340-341 (2007) 619-626.
DOI: 10.4028/www.scientific.net/kem.340-341.619
Google Scholar
[14]
J.K. Lee, D.N. Lee, Texture control and grain refinement of AA1050 Al alloy sheets by asymmetric rolling, Int. J. Mech. Sci. 50 (2008) 869-887.
DOI: 10.1016/j.ijmecsci.2007.09.008
Google Scholar
[15]
K. Bobor, Z. Hegedus, J. Gubicza, I. Barkai, P. Pekker, G. Krallics, Microstructure and mechanical properties of Al 7075 alloy processed by differential speed rolling, Periodica Polytechnica Mechanical Engineering. 56 (2012) 111-115.
DOI: 10.3311/pp.me.2012-2.06
Google Scholar
[16]
A. Pesin, D. Pustovoytov, T. Shveyova, M. Sverdlik, Finite Element Modeling of Roll Wear during Cold Asymmetric Sheet Rolling of Aluminum Alloy 5083, MATEC Web of Conferences. 26 (2015) 1-4.
DOI: 10.1051/matecconf/20152601010
Google Scholar