[1]
P. -A. Eggertsen, K. Mattiasson, Experiences from experimental and numerical springback studies of a semi-industrial forming tool, Int. J. Mater. Form. 5 (2012) 341–359.
DOI: 10.1007/s12289-011-1052-9
Google Scholar
[2]
J. Chen, Y. Xiao, W. Ding, X. Zhu, Describing the non-saturating cyclic hardening behavior with a newly developed kinematic hardening model and its application in springback prediction of DP sheet metals, J. Mater. Process. Tech. 215 (2015).
DOI: 10.1016/j.jmatprotec.2014.08.014
Google Scholar
[3]
F. Wang, Y. -P. You, Finite element analysis on influencing factors of springback in sheet metal V-bending, Shenyang GongyeDaxueXuebao/Journal Shenyang Univ. Technol. 34 (2012) 526–529+535.
Google Scholar
[4]
M. Koc, P. Chen, Simulation of springback variation in forming of advanced high strength steels, J. Mater. Process. Tech. 190 (2007) 189–198.
Google Scholar
[5]
F. Yoshida, T. Uemori, A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation, Int. J. Plasticity. 18 (2002) 661–686.
DOI: 10.1016/s0749-6419(01)00050-x
Google Scholar
[6]
R.M. Cleveland, a.K. Ghosh, Inelastic effects on springback in metals. Int. J. Plasticity. 18 (2002) 769–785.
DOI: 10.1016/s0749-6419(01)00054-7
Google Scholar
[7]
J. Mendiguren, Experimental and numerical analysis of the elastic behaviour of the TRIP 700 steel for springback predictions (2012), Thesis work.
Google Scholar
[8]
D. Banabic, Sheet Metal Forming Processes (2010).
Google Scholar
[9]
P. -A. Eggertsen, K. Mattiasson, On constitutive modeling for springback analysis. Int. J. Mech. Sci. 52 (2010) 804–818.
DOI: 10.1016/j.ijmecsci.2010.01.008
Google Scholar
[10]
B. Peeters, A theoretical investigation of the influence of dislocation sheets on evolution of yield surfaces in single-phase B.C.C. polycrystals, J. Mech. Phys. Solids. 50 (2002) 783–807.
DOI: 10.1016/s0022-5096(01)00094-1
Google Scholar
[11]
J. -Y. Lee,F. Barlat, M. -G. Lee, Constitutive and friction modeling for accurate springback analysis of advanced high strength steel sheets, Int. J. Plasticity. 71 (2015) 113–135.
DOI: 10.1016/j.ijplas.2015.04.005
Google Scholar
[12]
H. Kudo, A. Azushima, Interaction of surface microstructure and lubricant in metal forming tribology, In Proc. 2nd. Int. Conf. On Adv. Technol. of Plasticity (1987) 373–384.
Google Scholar
[13]
M. Merklein, F. Zoeller, V. Sturm, Experimental and numerical investigations on frictional behaviour under consideration of varying tribological conditions, Advanced Materials Research (2014) 966-967, 270–278.
DOI: 10.4028/www.scientific.net/amr.966-967.270
Google Scholar
[14]
S.S. Han, Contact Pressure dependent frictional characteristics of hot-dip galvanized high strength steel sheet and its effect on springback behavior, In 11th Asia-Pacific Conference on Engineering Plasticity and Its Applications, AEPA (2012).
DOI: 10.4028/www.scientific.net/kem.535-536.250
Google Scholar
[15]
K. Dohda, Z. Wang, Effects of average lubricant velocity and sliding velocity on friction behavior in mild steel sheet forming, J. tribol. 120(4) (1998) 724–728.
DOI: 10.1115/1.2833771
Google Scholar
[16]
J. Mendiguren, F. Cortes, L. Galdos, S. Berveiller, Strain path's influence on the elastic behaviour of the TRIP 700 steel, Mater. Sci. Eng. A. 560 (2013) 433-438.
DOI: 10.1016/j.msea.2012.09.087
Google Scholar