[1]
A.N. Petrov, B.A. Loginov, M.A. Petrov, Blank productions in mechanical engineering 4 (2016) 42-46 (in Russian).
Google Scholar
[2]
G.T. Smith, Industrial Metrology: surfaces and roundness, Springer-Verlag, London, (2002).
Google Scholar
[3]
G. Kerckhofs, G. Pyka, M. Moesen, S.V. Bael, J. Schrooten, M. Wevers, High-resolution micro-CT as a tool for 3D surface roughness measurement of 3D additive manufactured porous structures, Adv. Eng. Mater. 15(3) (2013) 153-158.
DOI: 10.1002/adem.201200156
Google Scholar
[4]
P. Petrov, J. Bast, M. Petrov, V. Voronkov, M. Schajchulov, Numerische Vergleichsanalyse der Methoden zur Abschätzung der Reibung in Umformprozessen, Tribol. Schmierungstech. 5 (2011) 10-14 (in German).
Google Scholar
[5]
M. Petrov, P. Petrov, R. Yafaev, To the Question on the Friction Assessment Methods Applied for Metal Forming Operations, Key Eng. Mat. 651-653 (2015) 522-529.
DOI: 10.4028/www.scientific.net/kem.651-653.522
Google Scholar
[6]
E. Rabinowicz, Friction and Wear of Materials, second ed., Wiley, New York, (1995).
Google Scholar
[7]
A.V. Chichinadze, Fundamentals tribology, Mashinostroenie, Moscow, 2001(in Russian).
Google Scholar
[8]
Y. -R. Jeng, Experimental study of the effects of surface roughness on friction, Tribol. T. 3(3) (1990) 402-410.
Google Scholar
[9]
E. Doege,B. Laackman,B. Kischnick, Fractal geometry used for the characterisation of sheet surfaces, Annal. CIRP 44(1) (1995) 197-200.
DOI: 10.1016/s0007-8506(07)62306-3
Google Scholar
[10]
T. Hisakado, Surface roughness and deformation of contact asperities between a rough and a flat surface, Wear 35(1) (1975) 53-61.
DOI: 10.1016/0043-1648(75)90141-6
Google Scholar
[11]
T. Hisakado, Effect of surface roughness on contact between solid surfaces, Wear 28(2) (1974) 217-234.
DOI: 10.1016/0043-1648(74)90163-x
Google Scholar
[12]
M.P.F. Sutcliffe, Surface asperity deformation in metal forming processes, Int. J. Mech. Sci. 30(11) (1988) 847-868.
DOI: 10.1016/0020-7403(88)90010-0
Google Scholar
[13]
J. Stahlmann, E.R. Nicodemus, S.C. Sharma, Surface Roughness Evolution in FEA Simulations of Bulk Metal Forming Process, Wear 288 (2012) 78-87.
DOI: 10.1016/j.wear.2012.02.005
Google Scholar
[14]
D. Leu, Modeling of Surface Roughness Effect on Dry Contact Friction in Metal Forming, Int. J. Adv. Manuf. Tech. 57(5-8) (2011) 575-584.
DOI: 10.1007/s00170-011-3305-7
Google Scholar
[15]
P. L. Menezes, Kishore, S. V. Kailas, Influence of Surface Texture and Roughness Parameters on Friction and Transfer Layer Formation during Sliding of Aluminium Pin on Steel Plate, Wear 267(9-10) (2009) 1534-1549.
DOI: 10.1016/j.wear.2009.06.003
Google Scholar
[16]
P. Groche, J. Stahlmann, J. Hartel, M. Koehler, Hydrodynamic effects of macroscopic deterministic surface structures in cold forging processes, Tribol. Int. 42 (2009) 1173-1179.
DOI: 10.1016/j.triboint.2009.03.019
Google Scholar
[17]
P. Groche, C. Mueller, A. Jahn, Effects of the Tool Lubrication in Cold Forging, Tribol. Lett. 53 (2014) 599-605.
DOI: 10.1007/s11249-014-0297-0
Google Scholar
[18]
P. Groche, P. Kramer, S. Zang, V. Rezanov, Prediction of the Evolution of the Surface Roughness in Dependence of the Lubrication System for Cold Forming Processes, Tribol. Lett. 59 (2015) 1-9.
DOI: 10.1007/s11249-015-0535-0
Google Scholar
[19]
L. -F. Chiang, H. Hosokawa, J. -Y. Wang, T. Uesugi, Y. Takigawa, K. Higashi, Investigation on Dynamic Friction Properties of Extruded AZ31 Magnesium Alloy Using by Ring Upsetting Method, Mater. Trans. 51(7) (2010) 1249-1254.
DOI: 10.2320/matertrans.p-m2010811
Google Scholar
[20]
K.H. Jung, H.C. Lee, J.S. Ajiboye, Y.T. Im, Characterization of Frictional Behaviour in Cold Forging, Tribol. Lett. 37 (2010) 353-359.
DOI: 10.1007/s11249-009-9529-0
Google Scholar
[21]
C. Hubert, N. Bay, P. Christiansen, R. Deltombe, L. Dubar, M. Dubar, A. Dubois, Analysis of fluid lubrication mechanisms in metal forming at mesoscopic scale, Annal. CIRP 61(1) (2012) 271-274.
DOI: 10.1016/j.cirp.2012.03.126
Google Scholar
[22]
Y. Carretta, N. Legrand, M. Laugier, J. ‐P. Ponthot, Numerical Simulations of Asperity Crushing – Application to cold rolling, AIP Conf. Proc. 1353 (2011) 1770-1775.
DOI: 10.1063/1.3589772
Google Scholar
[23]
Yu.A. Karpenko, A. Akay, A numerical model of friction between rough surfaces, Tribol. Int. 34 (2001) 531-545.
DOI: 10.1016/s0301-679x(01)00044-5
Google Scholar
[24]
R.S. Eriksen, S. Weidel, H.N. Hansen, Tribological influence of tool surface roughness within microforming, Int. J. Mater. Form. 3(Suppl. 1) (2010) 419-422.
DOI: 10.1007/s12289-010-0796-y
Google Scholar
[25]
N. Biba, S. Stebunov, A. Vlasov, Material forming simulation environment based on QForm3D software system, information on http: /www. qform3d. ru/files_ru/2008_0001_0. pdf (stand on the 15. 05. 2016).
Google Scholar
[26]
A.N. Levanov, V.L. Kolmogorov, S.P. Burkin, B.R. Kartak, Yu.V. Ashpur, Yu.I. Spasskiy, Contact friction in metal forming processes, Mashinostroenie, Moscow, 1975 (in Russian).
Google Scholar
[27]
P.A. Petrov, V.I. Perfilov, M.A. Petrov, Experimental and numerical investigation of friction in hot isothermal deformation of aluminium alloy A92618, Proceedings of the 7th International Esaform Conference on Material Forming, ed. S. Storen, 2004, Trondheim, Norway.
Google Scholar
[28]
P. Petrov, M. Petrov, E. Vasileva, A. Dubinchin, Research on Friction during Hot Deformation of Al-Alloys at High Strain Rate, Int. J. Mater. Form. 1(Suppl. 1) (2008) 1255-1258.
DOI: 10.1007/s12289-008-0170-5
Google Scholar
[29]
D.V. Laptev, Yu. G. Kalpin, A.N. Petrov, The application of water-based lubricants with colloidal graphite for hot forging, Proceeding of the conference on synthetic lubricants, ed. András Zakar, 12-14 September 1989, Sopron, Hungary.
Google Scholar
[30]
A. Petrov, P. Petrov, M. Petrov, Research into water-based colloidal-graphite lubricants for forging of carbon steels and Ni-based alloys, Int. J. Mater. Form. 3(Suppl. 1) (2010) 311-314.
DOI: 10.1007/s12289-010-0769-1
Google Scholar
[31]
A.N. Petrov, Estimation of the friction coefficient by ring compression test subjected to hot deformation, Izvestiya «MSTU «MAMI» 1(1) (2012) 196-200 (in Russian).
DOI: 10.17816/2074-0530-69993
Google Scholar
[32]
M. Petrov, V. Voronkov, P. Petrov, D. Grishin, Numerical investigation of the hot isothermal process and force size-effect of a clutch-half forming, Key Eng. Mat. 611-612(2014) 1608-1616.
DOI: 10.4028/www.scientific.net/kem.611-612.1608
Google Scholar