[1]
L. Chang, W. Sun, Y. Cui, F. Zhang, R. Yang, Effect of heat treatment on microstructure and mechanical properties of the hot-isostatic-pressed Inconel 718 powder compact, J. Alloy. Compd. 590 (2014) 227–232.
DOI: 10.1016/j.jallcom.2013.12.107
Google Scholar
[2]
F. Jafarian, M. Imaz Ciaran, D. Umbrello, P.J. Arrazola, L. Filice, H. Amirabadi, Finite element simulation of machining Inconel 718 alloy including microstructure changes, Int. J. Mech. Sci. 88 (2014) 110–121.
DOI: 10.1016/j.ijmecsci.2014.08.007
Google Scholar
[3]
H. Zhang, R.M. German, Homogeneity and properties of injection moulded Fe-Ni alloys, Met. Powder Rep. 56 (2001) 18–22.
DOI: 10.1016/s0026-0657(01)80323-4
Google Scholar
[4]
R.M. German, 1 - Metal powder injection molding (MIM): key trends and markets, in: D.F. Heaney (Ed. ), Handb. Met. Inject. Molding, Woodhead Publishing, 2012: p.1–25.
DOI: 10.1533/9780857096234.1
Google Scholar
[5]
Ö. Özgün, H.Ö. Gülsoy, R. Yılmaz, F. Fındık, Microstructural and mechanical characterization of injection molded 718 superalloy powders, J. Alloy. Compd. 576 (2013) 140–153.
DOI: 10.1016/j.jallcom.2013.04.042
Google Scholar
[6]
R. Muñoz-Moreno, E.M. Ruiz-Navas, B. Srinivasarao, J.M. Torralba, Microstructural Development and Mechanical Properties of PM Ti–45Al–2Nb–2Mn–0. 8 vol. %TiB2 Processed by Field Assisted Hot Pressing, J. Mater. Sci. Technol. 30 (2014) 1145–1154.
DOI: 10.1016/j.jmst.2014.08.008
Google Scholar
[7]
L. Minier, S. Le Gallet, Y. Grin, F. Bernard, A comparative study of nickel and alumina sintering using spark plasma sintering (SPS), Mater. Chem. Phys. 134 (2012) 243–253.
DOI: 10.1016/j.matchemphys.2012.02.059
Google Scholar
[8]
V.M. Kenkre, Theory of microwave interactions witn ceramic materials, Ceram. Trans. 21 (1991).
Google Scholar
[9]
M.A. Janney, H.D. Kimrey, M.A. Schmidt, J.O. Kiggans, Grain Growth in Microwave-Annealed Alumina, J. Am. Ceram. Soc. 74 (1991) 1675–1681.
DOI: 10.1111/j.1151-2916.1991.tb07159.x
Google Scholar
[10]
D. Agrawal, 12 - Microwave sintering of metal powders, in: I. Chang, Y. Zhao (Eds. ), Adv. Powder Metall., Woodhead Publishing, 2013: p.361–379.
Google Scholar
[11]
K. Naplocha, K. Granat, Microwave activated combustion synthesis of porous Al–Ti structures for composite reinforcing, J. Alloy. Compd. 486 (2009) 178–184.
DOI: 10.1016/j.jallcom.2009.06.164
Google Scholar
[12]
J. Li, Y. Lu, H. Zhang, L. Xin, Effect of grain size and hardness on fretting wear behavior of Inconel 600 alloys, Tribol. Int. 81 (2015) 215–222.
DOI: 10.1016/j.triboint.2014.08.005
Google Scholar
[13]
C. Slama, G. Cizeron, Étude du comportement structural de l'alliage NC 19 Fe Nb (Inconel 718), J. Phys. III. 7 (1997) 24.
DOI: 10.1051/jp3:1997148
Google Scholar
[14]
J. Hidalgo, A. Jiménez-Morales, T. Barriere, J.C. Gelin, J.M. Torralba, Capillary rheology studies of INVAR 36 feedstocks for powder injection moulding, Powder Technol. 273 (2015) 1–7.
DOI: 10.1016/j.powtec.2014.12.027
Google Scholar
[15]
J.J. Valencia, Sintering effect on the microstructure and mechanical properties of alloy 718 processed by powder injection molding, Miner. Met. Mater. Soc. superalloys 718, 625, 706 and various derivatives (1997).
DOI: 10.7449/1997/superalloys_1997_753_762
Google Scholar
[16]
A. García-Junceda, L. Acebo, J.M. Torralba, Study and Suppression of the Microstructural Anisotropy Generated During the Consolidation of a Carbonyl Iron Powder by Field-Assisted Hot Pressing, Metall. Mater. Trans. A. 46 (2015) 3192–3198.
DOI: 10.1007/s11661-015-2919-z
Google Scholar
[17]
J.M. Hill, T.R. Marchant, Modelling microwave heating, Appl. Math. Model. 20 (1996) 3–15.
Google Scholar
[18]
Z. Peng, J. -Y. Hwang, Microwave-assisted metallurgy, Int. Mater. Rev. 60 (2014) 30–63.
Google Scholar
[19]
G. Roussy, Temperature runaway of microwave heated materials: study and control, J Microw. Power. (1985).
Google Scholar
[20]
N.S. Stoloff, Wrought and P/M Superalloys - ASM, ASM Handb. Vol. 1 (1990) 950–980 (31).
Google Scholar