A Review of Microstructure and Microtexture of Tertiary Oxide Scale in a Hot Strip Mill

Article Preview

Abstract:

In hot rolling, metal oxides formed on steel surface can generally be classified as primary, secondary and tertiary oxide scales, corresponding to the reheating stages, the roughing stages and the finishing passes of continuous mills, respectively. The tertiary oxide scale grows into the final products on the hot-rolled steel strip during the finishing rolling and the subsequent cooling down to ambient temperature. We provide here a systematic overview of the oxidation mechanism, microstructure and microtexture development of the tertiary oxide scale. Mechanism of oxidation and Fe3O4 precipitation in tertiary oxide has been given as the fundamental theory. Three main sections has been divided in this review. The first section includes experimental investigations on microstructure evolution from the formation of oxide scale during hot rolling, then through continuous cooling, to Fe3O4 precipitation behaviour in storage cooling of hot-coiled strip. By using electron backscatter diffraction (EBSD) to characterise both the steel substrate and the oxide scale concurrently, the second section has further dealed with the texture-based analysis of oxide scale: phase identification, orientation analysis and coincident site lattice (CSL) boundaries. The third section has provided the general type of crystallographic texture and its evolutions in deformed Fe3O4 and steel substrate. Finally, the upcoming challenges have been addressed in this intriguing and promising research field.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

843-855

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.L. Roberts, Hot rolling of steel, CRC Press, (1983).

Google Scholar

[2] X.L. Yu, Z.Y. Jiang, X.D. Wang, D.B. Wei, Q. Yang, Effect of coiling temperature on oxide scale of hot-rolled strip, Adv. Mat. Res. 415 (2012) 853-858.

DOI: 10.4028/www.scientific.net/amr.415-417.853

Google Scholar

[3] Y. -A. Jing, Q. Shang, X. Zang, L. Zhang, X. Peng, P. Jia, The evolution of the surface morphologies and microstructures of an unleveled hot-rolled steel strip during cold rolling after hydrogen reduction, Metall. Mater. Trans. A 47 (2016).

DOI: 10.1007/s11661-015-3212-x

Google Scholar

[4] R. Chen, W. Yeun, Review of the high-temperature oxidation of iron and carbon steels in air or oxygen, Oxid. Met. 59 (2003) 433-468.

Google Scholar

[5] X. Yu, Z. Jiang, J. Zhao, D. Wei, J. Zhou, C. Zhou, Q. Huang, A comparison of texture development in an experimental and industrial tertiary oxide scale in a hot strip mill, Metall. Mater. Trans. B 46 (2015) 2503-2513.

DOI: 10.1007/s11663-015-0443-6

Google Scholar

[6] M. Krzyzanowski, J.H. Beynon, D.C. Farrugia, Oxide scale behavior in high temperature metal processing, John Wiley & Sons, (2010).

DOI: 10.1002/9783527630318

Google Scholar

[7] K. Dohda, C. Boher, F. Rezai-Aria, N. Mahayotsanun, Tribology in metal forming at elevated temperatures, Friction 3 (2015) 1-27.

DOI: 10.1007/s40544-015-0077-3

Google Scholar

[8] D.J. Young, High temperature oxidation and corrosion of metals, Elsevier, (2008).

Google Scholar

[9] N. Birks, G.H. Meier, F.S. Pettit, Introduction to the high temperature oxidation of metals, Cambridge University Press, (2006).

Google Scholar

[10] Z. Xia, C. Zhang, X. Huang, W. Liu, Z. Yang, Improve oxidation resistance at high temperature by nanocrystalline surface layer, Sci. Rep. 5 (2015).

DOI: 10.1038/srep13027

Google Scholar

[11] H.A. Wriedt, Fe-O (iron-oxygen) in: T.B. Massalski (Ed. ) Binary Alloy Phase Diagrams, ASM, Materials Park 1990, p.1739.

Google Scholar

[12] F. Friedel, H. Bolt, X. Cornet, G. Bourdon, X. Vanden Eynde, E. Zeimetz, S. Ehlers, F. Steinert, Investigation of the formation, constitution and properties of scale formed during the finishing, rolling, cooling and coiling of thin hot strips, EUR (2004).

Google Scholar

[13] R. Chen, W. Yuen, A study of the scale structure of hot-rolled steel strip by simulated coiling and cooling, Oxid. Met. 53 (2000) 539-560.

Google Scholar

[14] S. Hayashi, K. Mizumoto, S. Yoneda, Y. Kondo, H. Tanei, S. Ukai, The mechanism of phase transformation in thermally-grown FeO scale formed on pure-Fe in air, Oxid. Met. 81 (2014) 357-371.

DOI: 10.1007/s11085-013-9442-7

Google Scholar

[15] B. Gleeson, S. Hadavi, D. Young, Isothermal transformation behavior of thermally-grown wüstite, Mater. High Temp. 17 (2000) 311.

DOI: 10.1179/mht.2000.17.2.020

Google Scholar

[16] R.M. Cornell, U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences and uses, John Wiley & Sons, (2006).

Google Scholar

[17] D. Tozini, M. Forti, P. Gargano, P. Alonso, G. Rubiolo, Charge difference calculation in Fe/Fe3O4 interfaces from DFT results, Procedia Mater. Sci. 9 (2015) 612-618.

DOI: 10.1016/j.mspro.2015.05.037

Google Scholar

[18] C. Juricic, On the mechanisms of internal stress formation in multi-phase iron oxide scales, in, Ruhr University, Bochum, (2009).

Google Scholar

[19] X. Yu, A study of oxides formed on hot-rolled steel strip, LAP Lambert Academic Publishing, Saarbrücken, (2015).

Google Scholar

[20] A.S. Khanna, Introduction to high temperature oxidation and corrosion, ASM international, (2002).

Google Scholar

[21] C. Wagner, Equations for transport in solid oxides and sulfides of transition metals, Prog. Solid State Ch. 10 (1975) 3-16.

DOI: 10.1016/0079-6786(75)90002-3

Google Scholar

[22] W. Wu, Z. Wu, T. Yu, C. Jiang, W. -S. Kim, Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications, Sci. Technol. Adv. Mat. 16 (2015) 023501.

DOI: 10.1088/1468-6996/16/2/023501

Google Scholar

[23] W. Smeltzer, The kinetics of wustite scale formation on iron, Acta Metall. Mater. 8 (1960) 377-383.

DOI: 10.1016/0001-6160(60)90006-7

Google Scholar

[24] N.L. Peterson, W. -K. Chen, D. Wolf, Correlation and isotope effects for cation diffusion in magnetite, J. Phys. Chem. Solids 41 (1980) 709-719.

DOI: 10.1016/0022-3697(80)90077-3

Google Scholar

[25] A. Atkinson, M. O'dwyer, R. Taylor, 55Fe diffusion in magnetite crystals at 500°C and its relevance to oxidation of iron, J. Mater. Sci. 18 (1983) 2371-2379.

DOI: 10.1007/bf00541841

Google Scholar

[26] D. Caplan, M. Cohen, Scaling of iron at 500°C, Corros. Sci. 3 (1963) 139-IN132.

Google Scholar

[27] W. Smeltzer, D. Young, Oxidation properties of transition metals, Prog. Solid State Ch. 10 (1975) 17-54.

Google Scholar

[28] L. -G. Zheng, X. -Q. Hu, X. -H. Kang, D. -Z. Li, Effect of intergranular precipitation on the internal oxidation behavior of Cr–Mn–N austenitic stainless steels, Acta Metall. Sin. 28 (2015) 1008-1014.

DOI: 10.1007/s40195-015-0288-7

Google Scholar

[29] J. Paidassi, The precipitation of Fe3O4 in scales formed by oxidation of iron at elevated temperature, Acta Metall. Mater. 3 (1955) 447-451.

Google Scholar

[30] P.H. Bolt, Understanding the properties of oxide scales on hot rolled steel strip, Steel Res. Int. 75 (2004) 399-404.

DOI: 10.1002/srin.200405786

Google Scholar

[31] J. Baud, A. Ferrier, J. Manenc, Study of magnetite film formation at metal-scale interface during cooling of steel products, Oxid. Met. 12 (1978) 331-342.

DOI: 10.1007/bf00603577

Google Scholar

[32] K. Sachs, G. Jay, A magnetite seam at the scale/metal interface on mild steel, J. Iron Steel Inst. 195 (1960) 180-189.

Google Scholar

[33] G. Gibbs, R. Hales, The influence of metal lattice vacancies on the oxidation of high temperature materials, Corros. Sci. 17 (1977) 487-507.

DOI: 10.1016/0010-938x(77)90004-x

Google Scholar

[34] M. Davies, M. Simnad, C. Birchenall, On the mechanism and kinetics of the scaling of iron, J. Met 3 (1951) 889-896.

DOI: 10.1007/bf03397397

Google Scholar

[35] B. Schmid, N. Aas, Grong, R. degård, High-temperature oxidation of iron and the decay of wüstite studied with in situ ESEM, Oxid. Met. 57 (2002) 115-130.

Google Scholar

[36] H. Goldschmidt, The crystal structures of Fe, FeO and Fe3O4 and their interrelations, J. Iron Steel Inst 146 (1942) 157.

Google Scholar

[37] H. Torres, M. Varga, F. Widder, U. Cihak-Bayr, O. Viskovic, M. Rodríguez Ripoll, Experimental simulation of high temperature sliding contact of hot rolled steel, Tribol. Int. 93, Part B (2016) 745-754.

DOI: 10.1016/j.triboint.2015.01.007

Google Scholar

[38] D. Wei, Z. Jiang, Tribology in hot rolling of steel strip, in: J.P. Davim (Ed. ) Tribology in Manufacturing Technology, Springer, New York, 2013, pp.121-149.

DOI: 10.1007/978-3-642-31683-8_4

Google Scholar

[39] Z. Jiang, X. Yu, J. Zhao, C. Zhou, Q. Huang, G. Luo, K. Linghu, Tribological analysis of oxide scales during cooling process of rolled microalloyed steel, Adv. Mat. Res. 1017 (2014) 435-440.

DOI: 10.4028/www.scientific.net/amr.1017.435

Google Scholar

[40] Z. Jiang, J. Tang, W. Sun, A. Tieu, D. Wei, Analysis of tribological feature of the oxide scale in hot strip rolling, Tribol. Int. 43 (2010) 1339-1345.

DOI: 10.1016/j.triboint.2009.12.070

Google Scholar

[41] X. Yu, Z. Jiang, J. Zhao, D. Wei, J. Zhou, C. Zhou, Q. Huang, The role of oxide-scale microtexture on tribological behaviour in the nanoparticle lubrication of hot rolling, Tribol. Int. 93 (2016) 190-201.

DOI: 10.1016/j.triboint.2015.08.049

Google Scholar

[42] R. Bhattacharya, G. Jha, S. Kundu, R. Shankar, N. Gope, Influence of cooling rate on the structure and formation of oxide scale in low carbon steel wire rods during hot rolling, Surf. Coat. Tech. 201 (2006) 526-532.

DOI: 10.1016/j.surfcoat.2005.12.014

Google Scholar

[43] Y. -H. Qi, P. Lours, Y. Le Maoult, Spallation process of thermally grown oxides by in-situ CCD monitoring technique, J. Iron Steel Res. Int. 16 (2009) 90-94.

DOI: 10.1016/s1006-706x(10)60034-9

Google Scholar

[44] A. Chattopadhyay, P. Kumar, D. Roy, Study on formation of easy to remove oxide scale, during mechanical descaling of high carbon wire rods, Surf. Coat. Tech. 203 (2009) 2912-2915.

DOI: 10.1016/j.surfcoat.2009.03.006

Google Scholar

[45] R. Kawalla, F. Steinert, Investigation of the influence of processing parameters during hot rolling on tertiary scale formation, Materialwiss. Werkstofft. 38 (2007) 36-42.

Google Scholar

[46] X.L. Yu, Z.Y. Jiang, J.W. Zhao, D.B. Wei, C.L. Zhou, Effect of cooling rate on oxidation behaviour of microalloyed steel, Appl. Mech. Mater. 395 (2013) 273-278.

DOI: 10.4028/www.scientific.net/amm.395-396.273

Google Scholar

[47] R. Chen, W. Yuen, Oxidation of low-carbon, low-silicon mild steel at 450–900°C under conditions relevant to hot-strip processing, Oxid. Met. 57 (2002) 53-79.

Google Scholar

[48] C. Zhou, H. Ma, Y. Li, L. Wang, Eutectoid magnetite in wüstite under conditions of compressive stress and cooling, Oxid. Met. 78 (2012) 145-152.

DOI: 10.1007/s11085-012-9296-4

Google Scholar

[49] H. Abuluwefa, R. Guthrie, F. Ajersch, Oxidation of low carbon steel in multicomponent gases: Part I. Reaction mechanisms during isothermal oxidation, Metall. Mater. Trans. A 28 (1997) 1633-1641.

DOI: 10.1007/s11661-997-0255-7

Google Scholar

[50] P. Schmuki, From Bacon to barriers: a review on the passivity of metals and alloys, J. Solid State Electrochem 6 (2002) 145-164.

DOI: 10.1007/s100080100219

Google Scholar

[51] S. Saunders, M. Monteiro, F. Rizzo, The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review, Prog. Mater. Sci. 53 (2008) 775-837.

DOI: 10.1016/j.pmatsci.2007.11.001

Google Scholar

[52] N. Bertrand, C. Desgranges, D. Poquillon, M. -C. Lafont, D. Monceau, Iron oxidation at low temperature (260–500°C) in air and the effect of water vapor, Oxid. Met. 73 (2010) 139-162.

DOI: 10.1007/s11085-009-9171-0

Google Scholar

[53] H. Echsler, S. Ito, M. Schütze, Mechanical properties of oxide scales on mild steel at 800 to 1000°C, Oxid. Met. 60 (2003) 241-269.

DOI: 10.1023/a:1026067118621

Google Scholar

[54] X. Yu, Z. Jiang, D. Wei, C. Zhou, Q. Huang, D. Yang, Tribological properties of magnetite precipitate from oxide scale in hot-rolled microalloyed steel, Wear 302 (2013) 1286-1294.

DOI: 10.1016/j.wear.2013.01.015

Google Scholar

[55] B.V. Mahesh, R.K.S. Raman, Role of nanostructure in electrochemical corrosion and high temperature oxidation: a review, Metall. Mater. Trans. A 45 (2014) 5799-5822.

DOI: 10.1007/s11661-014-2452-5

Google Scholar

[56] M. Rudolphi, M. Schütze, Investigations for the validation of the defect based scale failure diagrams—Part II: extension of the concept and application to nickel oxide, titanium oxide and iron oxide, Oxid. Met. 84 (2015) 45-60.

DOI: 10.1007/s11085-015-9540-9

Google Scholar

[57] N. Yanar, B. Lutz, L. Garcia-Fresnillo, M. Brady, G.H. Meier, The effects of water vapor on the oxidation behavior of alumina forming austenitic stainless steels, Oxid. Met. 84 (2015) 541-565.

DOI: 10.1007/s11085-015-9581-0

Google Scholar

[58] J. Yan, Y. Gao, Y. Gu, F. Sun, Z. Yang, J. Lu, H. Yin, Y. Li, Role of grain boundaries on the cyclic steam oxidation behaviour of 18-8 austenitic stainless steel, Oxid. Met. (2015) 1-16.

DOI: 10.1007/s11085-015-9603-y

Google Scholar

[59] M.I. Manning, Geometrical effects on oxide scale integrity, Corros. Sci. 21 (1981) 301-316.

Google Scholar

[60] Tomlinso. Wj, Catchpol. S, Air speed and the oxidation of mild steel, Corros. Sci. 8 (1968) 845-849.

Google Scholar

[61] J. Stanley, J. Von Hoene, R. Huntoon, The oxidation of pure iron, Trans. Am. Soc. Metals 43 (1951) 426-453.

Google Scholar

[62] G. -M. Cao, T. -Z. Wu, X. Rong, Z. -F. Li, F. -X. Wang, Z. -Y. Liu, Effects of coiling temperature and cooling condition on transformation behavior of tertiary oxide scale, J. Iron Steel Res. Int. 22 (2015) 892-896.

DOI: 10.1016/s1006-706x(15)30086-8

Google Scholar

[63] R. Chen, W. Yuen, Oxide-scale structures formed on commercial hot-rolled steel strip and their formation mechanisms, Oxid. Met. 56 (2001) 89-118.

Google Scholar

[64] R.Y. Chen, W. Yuen, Short-time oxidation behavior of low-carbon, low-silicon steel in air at 850–1180°C–I: oxidation kinetics, Oxid. Met. 70 (2008) 39-68.

DOI: 10.1007/s11085-008-9111-4

Google Scholar

[65] R.Y. Chen, W. Yuen, Short-time oxidation behavior of low-carbon, low-silicon steel in air at 850–1180°C: II. linear to parabolic transition determined using existing gas-phase transport and solid-phase diffusion theories, Oxid. Met. 73 (2010).

DOI: 10.1007/s11085-009-9180-z

Google Scholar

[66] R. Chen, W. Yuen, Examination of oxide scales of hot rolled steel products, ISIJ Int. 45 (2005) 52-59.

DOI: 10.2355/isijinternational.45.52

Google Scholar

[67] E. Fedorova, M. Braccini, V. Parry, C. Pascal, M. Mantel, F. Roussel-Dherbey, D. Oquab, Y. Wouters, D. Monceau, Comparison of damaging behavior of oxide scales grown on austenitic stainless steels using tensile test and cyclic thermogravimetry, Corros. Sci. 103 (2016).

DOI: 10.1016/j.corsci.2015.11.012

Google Scholar

[68] X. Yu, Z. Jiang, J. Zhao, D. Wei, C. Zhou, Q. Huang, Microstructure and microtexture evolutions of deformed oxide layers on a hot-rolled microalloyed steel, Corros. Sci. 90 (2015) 140-152.

DOI: 10.1016/j.corsci.2014.10.005

Google Scholar

[69] X. Yu, Z. Jiang, J. Zhao, D. Wei, J. Zhou, C. Zhou, Q. Huang, Dependence of texture development on the grain size of tertiary oxide scales formed on a microalloyed steel, Surf. Coat. Tech. 272 (2015) 39-49.

DOI: 10.1016/j.surfcoat.2015.04.026

Google Scholar

[70] D. Caplan, R. Hussey, G. Sproule, M. Graham, The effect of FeO grain size and cavities on the oxidation of Fe, Corros. Sci. 21 (1981) 689-711.

DOI: 10.1016/0010-938x(81)90017-2

Google Scholar

[71] E. Lehockey, G. Palumbo, P. Lin, Grain boundary structure effects on cold work embrittlement of microalloyed steels, Scripta Mater. 39 (1998) 353-358.

DOI: 10.1016/s1359-6462(98)00172-9

Google Scholar

[72] J. -H. Kim, B.K. Kim, D. -I. Kim, P. -P. Choi, D. Raabe, K. -W. Yi, The role of grain boundaries in the initial oxidation behavior of austenitic stainless steel containing alloyed Cu at 700°C for advanced thermal power plant applications, Corros. Sci. 96 (2015).

DOI: 10.1016/j.corsci.2015.03.014

Google Scholar

[73] E. Lehockey, A. Brennenstuhl, I. Thompson, On the relationship between grain boundary connectivity, coincident site lattice boundaries, and intergranular stress corrosion cracking, Corros. Sci. 46 (2004) 2383-2404.

DOI: 10.1016/j.corsci.2004.01.019

Google Scholar

[74] H. Evans, H. Li, P. Bowen, A mechanism for stress-aided grain boundary oxidation ahead of cracks, Scripta Mater. 69 (2013) 179-182.

DOI: 10.1016/j.scriptamat.2013.03.026

Google Scholar

[75] B. -K. Kim, J.A. Szpunar, Orientation imaging microscopy in research on high temperature oxidation, in: Electron Backscatter Diffraction in Materials Science, Springer, 2009, pp.361-393.

DOI: 10.1007/978-0-387-88136-2_27

Google Scholar

[76] J. Robertson, M. Manning, Limits to adherence of oxide scales, Mater. Sci. Tech. 6 (1990) 81-92.

Google Scholar

[77] Y. Gao, Y. Kim, S. Chambers, Preparation and characterization of epitaxial iron oxide films, J. Mater. Res. 13 (1998) 2003-(2014).

Google Scholar

[78] X. Yu, Z. Jiang, J. Zhao, D. Wei, C. Zhou, Q. Huang, Crystallographic texture based analysis of Fe3O4/α-Fe2O3 scale formed on a hot-rolled microalloyed steel, ISIJ Int. 55 (2015) 278-284.

DOI: 10.2355/isijinternational.55.278

Google Scholar

[79] A. Lamirand, S. Grenier, V. Langlais, A. Ramos, H. Tolentino, X. Torrelles, M. De Santis, Magnetite epitaxial growth on Ag (001): Selected orientation, seed layer, and interface sharpness, Surf. Sci. 647 (2016) 33-38.

DOI: 10.1016/j.susc.2015.12.005

Google Scholar

[80] A. Crouch, J. Robertson, Creep and oxygen diffusion in magnetite, Acta Metall. Mater. 38 (1990) 2567-2572.

DOI: 10.1016/0956-7151(90)90268-l

Google Scholar

[81] X. Yu, Z. Jiang, J. Zhao, D. Wei, J. Zhou, C. Zhou, Q. Huang, Local strain analysis of the tertiary oxide scale formed on a hot-rolled steel strip via EBSD, Surf. Coat. Tech. 277 (2015) 151-159.

DOI: 10.1016/j.surfcoat.2015.07.037

Google Scholar

[82] J. Nychka, C. Pullen, M. He, D. Clarke, Surface oxide cracking associated with oxidation-induced grain boundary sliding in the underlying alloy, Acta Mater. 52 (2004) 1097-1105.

DOI: 10.1016/j.actamat.2003.10.042

Google Scholar

[83] X. Yu, Z. Jiang, J. Zhao, D. Wei, C. Zhou, Q. Huang, Effects of grain boundaries in oxide scale on tribological properties of nanoparticles lubrication, Wear 332 (2015) 1286-1292.

DOI: 10.1016/j.wear.2015.01.034

Google Scholar

[84] Y. Hu, V. Randle, An electron backscatter diffraction analysis of misorientation distributions in titanium alloys, Scripta Mater. 56 (2007) 1051-1054.

DOI: 10.1016/j.scriptamat.2007.02.030

Google Scholar

[85] R. Higginson, B. Roebuck, E. Palmiere, Texture development in oxide scales on steel substrates, Scripta Mater. 47 (2002) 337-342.

DOI: 10.1016/s1359-6462(02)00154-9

Google Scholar

[86] B. -K. Kim, J. Szpunar, Orientation imaging microscopy for the study on high temperature oxidation, Scripta Mater. 44 (2001) 2605-2610.

DOI: 10.1016/s1359-6462(01)00942-3

Google Scholar

[87] C. Juricic, H. Pinto, D. Cardinali, M. Klaus, C. Genzel, A. Pyzalla, Effect of substrate grain size on the growth, texture and internal stresses of iron oxide scales forming at 450°C, Oxid. Met. 73 (2010) 15-41.

DOI: 10.1007/s11085-009-9162-1

Google Scholar

[88] O. Engler, V. Randle, Introduction to texture analysis: macrotexture, microtexture, and orientation mapping, CRC press, (2009).

DOI: 10.1201/9781420063660

Google Scholar

[89] L. Suárez, P. Rodríguez-Calvillo, Y. Houbaert, N.F. Garza-Montes-De-Oca, R. Colás, Analysis of deformed oxide layers grown on steel, Oxid. Met. 75 (2011) 281-295.

DOI: 10.1007/s11085-010-9231-5

Google Scholar

[90] L. Sun, K. Muszka, B. Wynne, E. Palmiere, Influence of strain history and cooling rate on the austenite decomposition behavior and phase transformation products in a microalloyed steel, Metall. Mater. Trans. A 45 (2014) 3619-3630.

DOI: 10.1007/s11661-014-2283-4

Google Scholar

[91] S. Birosca, R. Higginson, Phase identification of oxide scale on low carbon steel, Mater. High Temp. 22 (2005) 179-184.

DOI: 10.3184/096034005782744416

Google Scholar

[92] M. Forti, P. Alonso, P. Gargano, P. Balbuena, G. Rubiolo, A DFT study of atomic structure and adhesion at the Fe (BCC)/Fe3O4 interfaces, Surf. Sci. 647 (2016) 55-65.

DOI: 10.1016/j.susc.2015.12.013

Google Scholar