Deep Drawing of One-Sided, Stiffness Increasing Sheet Metal Composites

Article Preview

Abstract:

Hybrid sheet metal composites do show advantages compared to monolithic materials when strength, stiffness, and damping characteristics are set to a global optimum. Even though the mechanical properties of hybrid sheet metal composites have been improved in recent years, the application of such hybrid materials in the automotive industry is not well-established due to insufficient knowledge about their forming characteristics (e.g. in deep drawing process). Stiffness increasing composites consist of two metal sheets and a viscoelastic damping layer in-between: the outer sheet reveals stamped beads which increases stiffness of composite while the inner sheet serves as cover sheet. This paper deals with challenges of formability of stiffness increasing composites in industrial deep-drawing processes. The main concern is dimensional stability and accuracy of those layered materials after finishing the forming process. In order to ensure accuracy of formed parts, a methodology was developed for increased quality of sheet metal composites. Depending on the drawing limit ratios and blankholder forces, which evaluate the drawability of component in general, the drawing limit ratio is influenced for profound or insufficient residual bead heights and widths. Besides insufficient bead height, which causes a reduction in moment of inertia, inner marks on the visible outer sheet hamper a broad application in practical use. Finally, paper provides detailed recipies for manufacturing and tool layout for deep drawing objectives of such composite material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

879-890

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on http: /www. global-automotive-lightweight-materials-detroit-2014. com/ (Applying advances in lightweight materials to multi-material mass produced vehicles. Automotive Lightweight Materials, Detroit, 2014).

Google Scholar

[2] H.P. Degischer, S. Lüftl, Leichtbau, first edition, Wiley Verlag, (2009).

Google Scholar

[3] D. Hofmann, M. Liewald, Material characterization and properties of newly developed sheet metal composites with stiffness increasing layers. Proceedings of IDDRG 2015, (2015).

Google Scholar

[4] C. Bolay, Beitrag zur Umformung von ebenen und versteiften Schichtverbundwerkstoffen. Dissertation, University of Stuttgart, (2014).

Google Scholar

[5] M. Nutzmann, Umformung von Mehrschichtverbundblechen für Leichtbauteile im Fahrzeugbau. Dissertation, University of RWTH Aachen, (2008).

Google Scholar

[6] J. Buhl, Umformverhalten und Grenzen von Schichtverbundwerkstoffen. Dissertation, University of Siegen, (2014).

Google Scholar

[7] M. Milch, Tiefziehen von geklebten Doppellagenblechen. Dissertation, University of Hannover, (2007).

Google Scholar

[8] O. Sokolova, Deep drawing properties of lightweight steel/polymer/steel sandwich composites. Archives of Civil and Mechanical Engineering. 12 (2012) 105–112.

DOI: 10.1016/j.acme.2012.05.001

Google Scholar

[9] K.F. Karlsson, A. Aström, Manufacturing and applications of structural sandwich components. Royal Institute of Technology, Sweden (1998), p.100.

Google Scholar

[10] B. Klein, Leichtbau-Konstruktion, Berechnungsgrundlagen und Gestaltung, GWV Fachverlage GmbH, Wiesbaden, (2007).

Google Scholar

[11] F.G. Rammerstorfer, K. Dorninger, A. Starlinger, Composite and Sandwich Shells, In: Nonlinear Analysis of Shells by Finite Elements, Springer, Wien, New York, (1992).

DOI: 10.1007/978-3-7091-2604-2_6

Google Scholar

[12] J. Wiedemann, Leichtbau, 2nd edition, Springer, Berlin, Heidelberg, New York, (1996).

Google Scholar

[13] G. Lang, Biegeverhalten von Kernverbund-Systemen, J. Appl. Polym. Sci. 22 (1978) 2831-2856.

Google Scholar

[14] F. Burbulla, Kontinuumsmechanische und bruchmechanische Modelle für Werkstoff-verbunde. Dissertation. University of Kassel, (2015).

Google Scholar

[15] G. Reyes, H. Kang, Mechanical behavior of lightweight thermoplastic fiber-metal laminates. J. Mater. Process. Tech. 186 (2007) 284-290.

DOI: 10.1016/j.jmatprotec.2006.12.050

Google Scholar

[16] O. Sokolova, A. Carrado, H. Palkowski, Metal-polymer-metal sandwiches with local metal reinforcements: a study on formability by deep drawing and bending. Compos. Struct. 94 (2011) 1-7.

DOI: 10.1016/j.compstruct.2011.08.013

Google Scholar

[17] H. Palkowski, O. Sokolova, A. Carrado, Forming potential of steel/polymer/steel sandwich composites with local plate inserts. Material Science Forum, 706-709 (2012), pp.681-686.

DOI: 10.4028/www.scientific.net/msf.706-709.681

Google Scholar

[18] O. Sokolova, A. Carrado, H. Palkowski, Adhesion and formability of thin steel/polymer/steel hybrid sandwich composites, In: Hirt G, et al., editors. I International conference on technology of plasticity, ICTP 2011. Aachen, Germany; (2011).

Google Scholar

[19] G. Lange, Beitrag zum Umformverhalten von dreischichtigen austenitischen Sandwich-verbunden mit polymerer Kernschicht, Institut für Metallurgie, Dissertation, TU Clausthal, (2005).

Google Scholar

[20] M. Liewald, P. Schmid, Entwicklung einer Rückfederungskompensationsstrategie. wt-online, Issue 10/2014, pp.649-653.

DOI: 10.37544/1436-4980-2014-10-649

Google Scholar