[1]
W.C. Emmens, G. Sebastiani, A.H. van den Boogard, The technology of Incremental Sheet Forming–A brief review of the history, J. Mater. Process. Tech. 210 (2010) 981-997.
DOI: 10.1016/j.jmatprotec.2010.02.014
Google Scholar
[2]
O.M. Badr, B. Rolfe, P. Hodgson, M. Weiss, Forming of high strength titanium sheet at room temperature, Mat. Des. 66 (2015) 618-626.
DOI: 10.1016/j.matdes.2014.03.008
Google Scholar
[3]
G. Palumbo, M. Brandizzi, Experimental investigations on the single point incremental forming of a titanium alloy component combining static heating with high tool rotation speed, Mat. Des. 40 (2012) 43-51.
DOI: 10.1016/j.matdes.2012.03.031
Google Scholar
[4]
F. Ozturk, R.E. Ece, N. Polat, A. Koksal, Z. Evis, A. Polat, Mechanical and microstructural evaluations of hot formed titanium sheets by electrical resistance heating process, Mat. Sci. Eng. A-Struct. 578 (2013) 207-214.
DOI: 10.1016/j.msea.2013.04.079
Google Scholar
[5]
D. Xu, B. Lu, T. Cao, J. Chen, H. Long, J. Cao, A comparative study on process potentials for frictional stir- and electric hot-assisted incremental sheet forming, Procedia Eng. 81 (2014) 2324-2329.
DOI: 10.1016/j.proeng.2014.10.328
Google Scholar
[6]
G. Ambrogio, L. Filice, F. Gagliardi, Formability of lightweight alloys by hot incremental sheet forming, Mat. Des. 34 (2012) 501-508.
DOI: 10.1016/j.matdes.2011.08.024
Google Scholar
[7]
A. Göttmann, J. Diettrich, G. Bergweiler, M. Bambach, G. Hirt, P. Loosen, R. Poprawe, Laser-assisted asymmetric incremental sheet forming of titanium sheet metal parts, Prod. Eng. 5 (2011) 263-271.
DOI: 10.1007/s11740-011-0299-9
Google Scholar
[8]
J.R. Duflou, B. Callebaut, J. Verbert, H. De Baerdemaeker, Laser Assisted Incremental Forming: Formability and Accuracy Improvement, CIRP Ann. 56 (2007) 273-276.
DOI: 10.1016/j.cirp.2007.05.063
Google Scholar
[9]
M.J. Donachie, Titanium: A Technical Guide, Second ed., ASM International, Materials Park, Ohio, (2007).
Google Scholar
[10]
A. Formisano, A. Astarita, L. Boccarusso, F. Capece Minutolo, L. Carrino, M. Durante, A. Langella, A. Squillace, Formability evaluation of grade 1 Titanium sheets depending on the temperature by FE analyses, Key Eng. Mater. 651-653 (2015).
DOI: 10.4028/www.scientific.net/kem.651-653.1054
Google Scholar
[11]
F. -K. Chen, K. -H. Chiu, Stamping formability of pure titanium sheets, J. Mater. Process. Tech. 170 (2005) 181-186.
Google Scholar
[12]
G. Hussain, L. Gao, Z.Y. Zhang, Formability evaluation of a pure titanium sheet in the cold incremental forming process, Int. J. Adv. Manuf. Tech. 37 (2008) 920-926.
DOI: 10.1007/s00170-007-1043-7
Google Scholar
[13]
B. Lu, Y. Fang, D.K. Xu, J. Chen, H. Ou, N.H. Moser, J. Cao, Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique roller-ball tool, Int. J. Mach. Tools Manuf. 85 (2014) 14-29.
DOI: 10.1016/j.ijmachtools.2014.04.007
Google Scholar
[14]
M. Durante, A. Formisano, A. Langella, Observations on the influence of tool-sheet contact conditions on an incremental forming process, J. Mater. Eng. Perform. 20 (2011) 941-946.
DOI: 10.1007/s11665-010-9742-x
Google Scholar
[15]
P. Karlsson, P. Krahmalev, Influence of work material proof stress and tool steel microstructure on galling initiation and critical contact pressure. Tribol. Int. (2012) 104-110.
DOI: 10.1016/j.triboint.2012.10.023
Google Scholar
[16]
J.L. Andreasen, N. Bay, L. De Chiffre, Quantification of galling in sheet metal forming by surface topography characterization, Int. J. Mach. Tools Manuf. 38 (1998) 503-510.
DOI: 10.1016/s0890-6955(97)00095-3
Google Scholar
[17]
U. Wiklund, I.M. Hutchings, Investigation of surface treatments for galling protection of titanium alloys, Wear 251 (2001) 1034-1041.
DOI: 10.1016/s0043-1648(01)00730-x
Google Scholar
[18]
F. Capece Minutolo, M. Durante, A. Formisano, A. Langella, Evaluation of the maximum slope angle of simple geometries carried out by incremental forming process, J. Mater. Process. Tech. 194 (2007) 145-150.
DOI: 10.1016/j.jmatprotec.2007.04.109
Google Scholar