Formability and Surface Quality of Incrementally Formed Grade 1 Titanium Thin Sheets

Article Preview

Abstract:

The incremental forming of titanium alloy sheets combines the advantages of this advanced flexible manufacturing process, that allows to produce complex components without using dedicated tools, with the interesting properties of the material under consideration. In this study, thin sheets of grade 1 titanium were incrementally formed to evaluate their formability and surface quality by varying the tool-sheet contact conditions. Experimental tests and surface analyses highlight dependence on the contact conditions of the surface quality rather than of the formability. Moreover, they emphasize that the tool-sheet contact conditions mainly affect the repeatability of the process due to the occurrence of galling.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-106

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.C. Emmens, G. Sebastiani, A.H. van den Boogard, The technology of Incremental Sheet Forming–A brief review of the history, J. Mater. Process. Tech. 210 (2010) 981-997.

DOI: 10.1016/j.jmatprotec.2010.02.014

Google Scholar

[2] O.M. Badr, B. Rolfe, P. Hodgson, M. Weiss, Forming of high strength titanium sheet at room temperature, Mat. Des. 66 (2015) 618-626.

DOI: 10.1016/j.matdes.2014.03.008

Google Scholar

[3] G. Palumbo, M. Brandizzi, Experimental investigations on the single point incremental forming of a titanium alloy component combining static heating with high tool rotation speed, Mat. Des. 40 (2012) 43-51.

DOI: 10.1016/j.matdes.2012.03.031

Google Scholar

[4] F. Ozturk, R.E. Ece, N. Polat, A. Koksal, Z. Evis, A. Polat, Mechanical and microstructural evaluations of hot formed titanium sheets by electrical resistance heating process, Mat. Sci. Eng. A-Struct. 578 (2013) 207-214.

DOI: 10.1016/j.msea.2013.04.079

Google Scholar

[5] D. Xu, B. Lu, T. Cao, J. Chen, H. Long, J. Cao, A comparative study on process potentials for frictional stir- and electric hot-assisted incremental sheet forming, Procedia Eng. 81 (2014) 2324-2329.

DOI: 10.1016/j.proeng.2014.10.328

Google Scholar

[6] G. Ambrogio, L. Filice, F. Gagliardi, Formability of lightweight alloys by hot incremental sheet forming, Mat. Des. 34 (2012) 501-508.

DOI: 10.1016/j.matdes.2011.08.024

Google Scholar

[7] A. Göttmann, J. Diettrich, G. Bergweiler, M. Bambach, G. Hirt, P. Loosen, R. Poprawe, Laser-assisted asymmetric incremental sheet forming of titanium sheet metal parts, Prod. Eng. 5 (2011) 263-271.

DOI: 10.1007/s11740-011-0299-9

Google Scholar

[8] J.R. Duflou, B. Callebaut, J. Verbert, H. De Baerdemaeker, Laser Assisted Incremental Forming: Formability and Accuracy Improvement, CIRP Ann. 56 (2007) 273-276.

DOI: 10.1016/j.cirp.2007.05.063

Google Scholar

[9] M.J. Donachie, Titanium: A Technical Guide, Second ed., ASM International, Materials Park, Ohio, (2007).

Google Scholar

[10] A. Formisano, A. Astarita, L. Boccarusso, F. Capece Minutolo, L. Carrino, M. Durante, A. Langella, A. Squillace, Formability evaluation of grade 1 Titanium sheets depending on the temperature by FE analyses, Key Eng. Mater. 651-653 (2015).

DOI: 10.4028/www.scientific.net/kem.651-653.1054

Google Scholar

[11] F. -K. Chen, K. -H. Chiu, Stamping formability of pure titanium sheets, J. Mater. Process. Tech. 170 (2005) 181-186.

Google Scholar

[12] G. Hussain, L. Gao, Z.Y. Zhang, Formability evaluation of a pure titanium sheet in the cold incremental forming process, Int. J. Adv. Manuf. Tech. 37 (2008) 920-926.

DOI: 10.1007/s00170-007-1043-7

Google Scholar

[13] B. Lu, Y. Fang, D.K. Xu, J. Chen, H. Ou, N.H. Moser, J. Cao, Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique roller-ball tool, Int. J. Mach. Tools Manuf. 85 (2014) 14-29.

DOI: 10.1016/j.ijmachtools.2014.04.007

Google Scholar

[14] M. Durante, A. Formisano, A. Langella, Observations on the influence of tool-sheet contact conditions on an incremental forming process, J. Mater. Eng. Perform. 20 (2011) 941-946.

DOI: 10.1007/s11665-010-9742-x

Google Scholar

[15] P. Karlsson, P. Krahmalev, Influence of work material proof stress and tool steel microstructure on galling initiation and critical contact pressure. Tribol. Int. (2012) 104-110.

DOI: 10.1016/j.triboint.2012.10.023

Google Scholar

[16] J.L. Andreasen, N. Bay, L. De Chiffre, Quantification of galling in sheet metal forming by surface topography characterization, Int. J. Mach. Tools Manuf. 38 (1998) 503-510.

DOI: 10.1016/s0890-6955(97)00095-3

Google Scholar

[17] U. Wiklund, I.M. Hutchings, Investigation of surface treatments for galling protection of titanium alloys, Wear 251 (2001) 1034-1041.

DOI: 10.1016/s0043-1648(01)00730-x

Google Scholar

[18] F. Capece Minutolo, M. Durante, A. Formisano, A. Langella, Evaluation of the maximum slope angle of simple geometries carried out by incremental forming process, J. Mater. Process. Tech. 194 (2007) 145-150.

DOI: 10.1016/j.jmatprotec.2007.04.109

Google Scholar