[1]
S. P. Keeler, W. A. Backhoffen, Plastic instability and fracture in sheet stretched over rigid punches, ASM Trans. Q., 56 (1964), 25-48.
Google Scholar
[2]
G. M. Goodwin, Application of strain analysis to sheet metal forming problems in the press shop, J. SAE Tech., no. 680093(1968).
DOI: 10.4271/680093
Google Scholar
[3]
Z. Marciniak, K. Kuczynski, Limit strains in the processes of stretch forming sheet metal, Int. J. Mech. Sci., 9 (1967), 609-612.
Google Scholar
[4]
J. W. Hutchinson, K. W. Neale, Sheet necking-II. Time-inependent behavior, D.P. Koistinen et al (Eds. ) Mech. Sheet Metal Forming, (1978) 127-153.
DOI: 10.1007/978-1-4613-2880-3_6
Google Scholar
[5]
A.L. Gurson, Continuum theory of ductile rupture by void-nucleation an growth: Part I. Yield criteria and flow rules for porous ductile media, J. Eng. Mat. Tech, Transaction of ASME, 99 (1977) 2-15.
DOI: 10.2172/7351470
Google Scholar
[6]
H. S. Son, Y. S. Kim, Prediction of forming limits for anisotropic sheets containing prolate ellipsoidal voids, Int. J. Mech. Sci. 45 (2003) 1625-1643.
DOI: 10.1016/j.ijmecsci.2003.10.011
Google Scholar
[7]
P. Hora, L. Tong, J. Reissner, A prediction method for ductile sheet metal failure using FE-simulation, NUMISHEET 1996, 252-256.
Google Scholar
[8]
P. Hora, L. Tong, J. Reissner, Mathematical prediction of FLC using macroscopic instability criteria combined with micro structural crack propagation models, Plasticity conference, 2003, 364-366.
Google Scholar
[9]
J. Krauer, P. Hora, L. Tong, Forming limits prediction of metastable materials with temperature and strain induced martensite transformation, NUMIFORM 2007, 1263-1268.
DOI: 10.1063/1.2740983
Google Scholar
[10]
P. Hora, L. Tong, Theoretical prediction of the influence of curvature and thickness on the enhanced modified maximum force criterion, NUMISHEET 2008, 205-210.
Google Scholar
[11]
P. Hora, L. Tong, numerical prediction of FLC using the enhanced modified maximum force criterion (emmfc), FLC-Zurich 06, 31-36.
Google Scholar
[12]
D. Banabic, F. Barlat, O. Cazacu, T. Kuwabara, Advances in anisotropy and formability, Int. J. Material Form. 3 (2010) 165-189.
DOI: 10.1007/s12289-010-0992-9
Google Scholar
[13]
H. Aretz, Numerical restrictions of the modified maximum force criterion for prediction of forming limits in sheet metal forming, Model. Simul. Mater. Sci. Eng. 12 (2004) 677-692.
DOI: 10.1088/0965-0393/12/4/009
Google Scholar
[14]
L. Paraianu, G. Dragos, I. Bichis, D. Comsa, D. Banabic, A new formulation of the modified maximum force criterion (mmfc), Int. J. Material Form. 3 (2010) 243-246.
DOI: 10.1007/s12289-010-0752-x
Google Scholar
[15]
F. K. Chen, K.H. Chiu, Stamping formability of pure titanium sheets, J. Mater. Process. Tech. 170 (2005) 181-186.
Google Scholar
[16]
A. L. Port, F. Toussaint, R. Arrieux, Finite element study and sensitive analysis of the deep-drawing formability of commercially titanium, Int. J. Mat. Forming. 2 (2009) 121-129.
DOI: 10.1007/s12289-009-0398-8
Google Scholar
[17]
R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Royal Soc. London Proc., 193A (1948) 281.
Google Scholar
[18]
P. Hora, L. Tong, B. Berisha, Modified maximum force criterion, a model for the theoretical prediction of forming limit curves, Int. J. Material Form. 6 (2013) 267-279.
DOI: 10.1007/s12289-011-1084-1
Google Scholar
[19]
H. W. Swift, Plastic instability under plane stress, J. Mech. Phys. Solids. 3 (1952) 1-18.
Google Scholar
[20]
A. Barata da Rocha, A. D. Santos, P. Teixeira, M. C. Butuc, Analysis of plastic flow localization under strain paths changes and its coupling with finite element simulation in sheet metal forming, J. Mater. Process. Tech. 209 (2009) 5097-5109.
DOI: 10.1016/j.jmatprotec.2009.02.008
Google Scholar
[21]
Y. S. Kim, S. H. Yang, Effect of plastic anisotropy on the formability of aluminum 6016-T4 sheet material, accepted by Chinese Journal of Mechanical Engineering (2015), No. CJME-D-15-00361.
DOI: 10.1007/s10033-017-0128-y
Google Scholar
[22]
M. Ishiki, T. Kuwabara, Y. Hayashida, Measurement and analysis of differential work hardening behavior of pure titanium sheet using spline function, Int. J. Mater Form. 4 (2011) 193-204.
DOI: 10.1007/s12289-010-1024-5
Google Scholar
[23]
T. Sumita, T. Kuwabara, Measurement and material modeling of biaxial work-hardening behavior for pure titanium sheet, NUMISHEET 2014, AIP Conf. Proc. 1567 (2013) 516-519.
DOI: 10.1063/1.4850025
Google Scholar
[24]
Q. Cao, Q. Zhang, X. Zhang, Anisotropy of mechanical behavior in commercially pure titanium sheets, J. Harbin Ints. Tech. 22 (2015) 63-67.
Google Scholar