Positive Effects of High-Temperature Steel Creep Behavior on Continuous Casting Slab

Article Preview

Abstract:

Mechanical properties and creep behavior of continuous casting slab subjected to uniaxial tensile tests at 1100 and 1150 °C were considered in this paper. All of specimens was given a typical in-situ melting thermal history and interrupted cooling cycle before testing. An increase in load and temperature accelerates the creep rate thereby decreasing the steady state range. A new creep equation whose parameters are calculated by inverse-estimation using the regression analysis was proposed based on Norton-Bailey creep law. Primary and secondary creep stages could be described accurately by the new equation. Positive creep effects on straightening technology in continuous casting slab were presented in this paper. Involute continuous straightening technology could give full play to the role of steel creep deformation at high temperature. This research is helpful for the design of the new casting machine and improvement of old casting machine in using depended on high temperature creep behavior.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-110

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. M. Du, X. D. Wang, Y. Liu, Investigation on thermo-mechanical behavior of mold corner for continuous casting slab, ISIJ Int. 55 (2015) 2150-2157.

DOI: 10.2355/isijinternational.isijint-2015-230

Google Scholar

[2] J. K. Brimacombe, K. Sorimachi, Crack formation in the continuous casting of steel, Metallurg. Mater. Trans. B. 8 (1977) 489-505.

DOI: 10.1007/bf02696937

Google Scholar

[3] B. Mintz, R. Abushosha, J. J. Jonas, Influence of dynamic recrystallisation on the tensile ductility of steels in the temperature range 700 to 1150, ISIJ Int. 32 (1992) 241-249.

DOI: 10.2355/isijinternational.32.241

Google Scholar

[4] V. Raghavan, Materials Science and Engineering, Prentice- Hall of India, New Delhi, (2004).

Google Scholar

[5] J. Brnic, M. Brcic, Comparison of mechanical properties and resistance to creep of 20MnCr5 steel and X10CrAlSi25 steel, Proc. Eng. 100 (2015) 84-89.

DOI: 10.1016/j.proeng.2015.01.345

Google Scholar

[6] J. Brnic, G. Turkalj, S. Krscanski, Information relevant for the design of structure: Ferritic-Heat resistant high chromium steel X10CrAlSi25, Mater. Des. 63 (2014) 508-518.

DOI: 10.1016/j.matdes.2014.06.051

Google Scholar

[7] G. S. Deshmukh, M. L. Prasad, D. R. Peshwe, Creep properties assessment of P92 steel by small punch creep tests, Trans. Indian Inst. Metal. (2015) 1-9.

DOI: 10.1007/s12666-015-0579-8

Google Scholar

[8] A. S. Mammar, D. Gruber, H. Harmuth, Tensile creep measurements of ordinary ceramic refractories at service related loads including setup, creep law, testing and evaluation procedures, Ceram. Int. 42 (2016) 6791–6799.

DOI: 10.1016/j.ceramint.2016.01.056

Google Scholar

[9] J. Brnic, G. Turkalj, M. Canadija, AISI 316Ti (1. 4571) steel-mechanical, creep and fracture properties versus temperature, J. Constr. Steel Res. 67 (2011) 1948-(1952).

DOI: 10.1016/j.jcsr.2011.06.011

Google Scholar

[10] J. Brnic, M. Canadija, G. Turkalj, Behaviour of S 355JO steel subjected to uniaxial stress at lowered and elevated temperatures and creep, Bull. Mater. Sci. 33 (2010) 475-481.

DOI: 10.1007/s12034-010-0073-1

Google Scholar

[11] M. B. Ruggles-Wrenn, T. Yeleser, G. E. Fair, Effects of steam environment on creep behavior of Nextel™610/Monazite/Alumina composite at 1, 100°C, Appl. Comp. Mater. 16 (2009) 379-392.

DOI: 10.1007/s10443-009-9105-7

Google Scholar

[12] A. G. D. Reis, D. A. P. Reis, A. J. Abdalla, High-temperature creep resistance and effects on the austenite reversion and precipitation of 18 Ni (300) maraging steel, Mater. Character. 107 (2015) 350-357.

DOI: 10.1016/j.matchar.2015.08.002

Google Scholar

[13] Y. C. Lin, Y. Q. Jiang, Y. C. Xia, Effects of creep-aging processing on the corrosion resistance and mechanical properties of an Al–Cu–Mg alloy, Mater. Sci. Eng. A. 605 (2014) 192-202.

DOI: 10.1016/j.msea.2014.03.055

Google Scholar

[14] D. Q. Zhou, W. X. Zhao, H. H. Mao, Precipitate characteristics and their effects on the high-temperature creep resistance of alumina-forming austenitic stainless steels, Mater. Sci. Eng. A. 622 (2015) 91-100.

DOI: 10.1016/j.msea.2014.11.013

Google Scholar

[15] Z. H. Dong, High temperature mechanical properties for the columnar zone of steel 20CrMnTi, Chinese J. Mater. Res. 27 (2013) 273-278.

Google Scholar

[16] K. X. Dong, D. H. Shuang, Z. X. Ming. High temperature mechanical property of low carbon steel, J. Northeastern University. 25 (2004) 40-43.

Google Scholar

[17] H. Xu, J. Yuan, Y. Z. Ni, Primary creep process of P92 steel based on Norton-Bailey model, J. Mater. Sci. Eng. 31 (2013) 568-571.

Google Scholar

[18] C. S. Liu, T. W. Yang, W. H. Wu, A generalized numerical creep equation, Scripta Materialia. 37 (1997) 425-429.

DOI: 10.1016/s1359-6462(97)00104-8

Google Scholar