[1]
F. M. Du, X. D. Wang, Y. Liu, Investigation on thermo-mechanical behavior of mold corner for continuous casting slab, ISIJ Int. 55 (2015) 2150-2157.
DOI: 10.2355/isijinternational.isijint-2015-230
Google Scholar
[2]
J. K. Brimacombe, K. Sorimachi, Crack formation in the continuous casting of steel, Metallurg. Mater. Trans. B. 8 (1977) 489-505.
DOI: 10.1007/bf02696937
Google Scholar
[3]
B. Mintz, R. Abushosha, J. J. Jonas, Influence of dynamic recrystallisation on the tensile ductility of steels in the temperature range 700 to 1150, ISIJ Int. 32 (1992) 241-249.
DOI: 10.2355/isijinternational.32.241
Google Scholar
[4]
V. Raghavan, Materials Science and Engineering, Prentice- Hall of India, New Delhi, (2004).
Google Scholar
[5]
J. Brnic, M. Brcic, Comparison of mechanical properties and resistance to creep of 20MnCr5 steel and X10CrAlSi25 steel, Proc. Eng. 100 (2015) 84-89.
DOI: 10.1016/j.proeng.2015.01.345
Google Scholar
[6]
J. Brnic, G. Turkalj, S. Krscanski, Information relevant for the design of structure: Ferritic-Heat resistant high chromium steel X10CrAlSi25, Mater. Des. 63 (2014) 508-518.
DOI: 10.1016/j.matdes.2014.06.051
Google Scholar
[7]
G. S. Deshmukh, M. L. Prasad, D. R. Peshwe, Creep properties assessment of P92 steel by small punch creep tests, Trans. Indian Inst. Metal. (2015) 1-9.
DOI: 10.1007/s12666-015-0579-8
Google Scholar
[8]
A. S. Mammar, D. Gruber, H. Harmuth, Tensile creep measurements of ordinary ceramic refractories at service related loads including setup, creep law, testing and evaluation procedures, Ceram. Int. 42 (2016) 6791–6799.
DOI: 10.1016/j.ceramint.2016.01.056
Google Scholar
[9]
J. Brnic, G. Turkalj, M. Canadija, AISI 316Ti (1. 4571) steel-mechanical, creep and fracture properties versus temperature, J. Constr. Steel Res. 67 (2011) 1948-(1952).
DOI: 10.1016/j.jcsr.2011.06.011
Google Scholar
[10]
J. Brnic, M. Canadija, G. Turkalj, Behaviour of S 355JO steel subjected to uniaxial stress at lowered and elevated temperatures and creep, Bull. Mater. Sci. 33 (2010) 475-481.
DOI: 10.1007/s12034-010-0073-1
Google Scholar
[11]
M. B. Ruggles-Wrenn, T. Yeleser, G. E. Fair, Effects of steam environment on creep behavior of Nextel™610/Monazite/Alumina composite at 1, 100°C, Appl. Comp. Mater. 16 (2009) 379-392.
DOI: 10.1007/s10443-009-9105-7
Google Scholar
[12]
A. G. D. Reis, D. A. P. Reis, A. J. Abdalla, High-temperature creep resistance and effects on the austenite reversion and precipitation of 18 Ni (300) maraging steel, Mater. Character. 107 (2015) 350-357.
DOI: 10.1016/j.matchar.2015.08.002
Google Scholar
[13]
Y. C. Lin, Y. Q. Jiang, Y. C. Xia, Effects of creep-aging processing on the corrosion resistance and mechanical properties of an Al–Cu–Mg alloy, Mater. Sci. Eng. A. 605 (2014) 192-202.
DOI: 10.1016/j.msea.2014.03.055
Google Scholar
[14]
D. Q. Zhou, W. X. Zhao, H. H. Mao, Precipitate characteristics and their effects on the high-temperature creep resistance of alumina-forming austenitic stainless steels, Mater. Sci. Eng. A. 622 (2015) 91-100.
DOI: 10.1016/j.msea.2014.11.013
Google Scholar
[15]
Z. H. Dong, High temperature mechanical properties for the columnar zone of steel 20CrMnTi, Chinese J. Mater. Res. 27 (2013) 273-278.
Google Scholar
[16]
K. X. Dong, D. H. Shuang, Z. X. Ming. High temperature mechanical property of low carbon steel, J. Northeastern University. 25 (2004) 40-43.
Google Scholar
[17]
H. Xu, J. Yuan, Y. Z. Ni, Primary creep process of P92 steel based on Norton-Bailey model, J. Mater. Sci. Eng. 31 (2013) 568-571.
Google Scholar
[18]
C. S. Liu, T. W. Yang, W. H. Wu, A generalized numerical creep equation, Scripta Materialia. 37 (1997) 425-429.
DOI: 10.1016/s1359-6462(97)00104-8
Google Scholar