Magnetic and Electrical Properties of Iron-Based Soft Magnetic Composites with Silicone Resin Insulation Coating

Article Preview

Abstract:

This paper investigates the magnetic and electrical properties of iron silicone resin soft magnetic composites. Scanning electron microscopy, energy dispersive X-ray spectroscopy analysis, distribution maps and density measurements confirm that the particles surface layer contains a thin layer of silicone resin with complete coverage of powders surface. The thickness of silicone resin film is averagely 120nm according to the results of transmission electron microscopy. Magnetic measurements show that the silicone resin insulation has a greater heat resistance than the conventional phosphate insulation, which enables stress reliving during annealing at higher temperature (600°C) without a large increase in magnetic loss. The results of annealing at 600°C show that the electrical resistivity increased from 8μΩ·m for SOMALOYTM samples to 55μΩ·m for the silicone insulated composites produced in this work.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-88

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Bayramli, O. Golgelioglu, H. B. Ertan, Powder metal development for electrical motor applications, J. Mater. Process. Technol. 161(1-2) (2005) 83-88.

Google Scholar

[2] S. Giménez, T. Lauwagie, G. Roebben, W. Heylen, O. Van der Biest, Effects of microstructural heterogeneity on the mechanical properties of pressed soft magnetic composite bodies, J. Alloys Compd. 419(1) (2006) 299-305.

DOI: 10.1016/j.jallcom.2005.09.053

Google Scholar

[3] E. Enescu, P. Lungu, S. Marinescu, P. Dragoi, The effect of processing conditions on magnetic and electric properties of composite materials used in nonconventional magnetic circuits, Adv. Mater. 8(2) (2006) 745-748.

Google Scholar

[4] I. Hemmati, H. R. Madaah Hosseini, A. Kianvash, The correlations between processing parameters and magnetic properties of an iron–resin soft magnetic composite, J. Magn. Magn. Mater. 305(1) (2006) 147-151.

DOI: 10.1016/j.jmmm.2005.12.004

Google Scholar

[5] A. Ozols, M. Pagnola, D. Iñaki García, H. Sirkin, Electroless coating of Permalloy powder and DC-resistivity of alloy composites, Surf. Coat. Technol. 200(24) (2006) 6821-6825.

DOI: 10.1016/j.surfcoat.2005.10.028

Google Scholar

[6] H. Shokrollahi, K. Janghorban, Soft magnetic composite materials (SMCs), J. Mater. Process. Technol. 189(1-3) (2007) 1-12.

Google Scholar

[7] I. P. Gilbert, V. Moorthy, S. J. Bull, J. T. Evans, A. G. Jack, Development of soft magnetic composites for low-loss applications J. Magn. Magn. Mater. 242-245 (2002) 232-234.

DOI: 10.1016/s0304-8853(01)01252-5

Google Scholar

[8] A. H. Taghvaei, A. Ebrahimi, M. Ghaffari, K. Janghorban, Magnetic and structural studies of mechanically alloyed nanostructured Fe49Co49V2 powders, J. Magn. Magn. Mater. 322(24) (2010) 3932-3937.

DOI: 10.1016/j.jmmm.2010.08.025

Google Scholar

[9] A. H. Taghvaei, H. Shokrollahi, K. Janghorban, Properties of iron-based soft magnetic composite with iron phosphate–silane insulation coating, J. Alloys Compd. 481(1-2) (2009) 681-686.

DOI: 10.1016/j.jallcom.2009.03.074

Google Scholar

[10] H. Shokrollahi, K. Janghorban, Effect of warm compaction on the magnetic and electrical properties of Fe-based soft magnetic composites, J. Magn. Magn. Mater. 313(1) (2007) 182-186.

DOI: 10.1016/j.jmmm.2006.12.022

Google Scholar

[11] Y. G. Guo, J. G. Zhu, Z. W. Lin, J. J. Zhong, 3D vector magnetic properties of soft magnetic composite material, J. Magn. Magn. Mater. 302(2) (2006) 511-516.

DOI: 10.1016/j.jmmm.2005.10.019

Google Scholar

[12] J. J. Zhong, Y. G. Guo, J. G. Zhu, Z. W. Lin, Characteristics of soft magnetic composite material under rotating magnetic fluxes, J. Magn. Magn. Mater. 299(1) (2006) 29-34.

DOI: 10.1016/j.jmmm.2005.03.016

Google Scholar

[13] A. H. Taghvaei, H. Shokrollahi, K. Janghorban, Magnetic and structural properties of iron phosphate–phenolic soft magnetic composites, J. Magn. Magn. Mater. 321(23) (2009) 3926-3932.

DOI: 10.1016/j.jmmm.2009.07.061

Google Scholar

[14] A. H. Taghvaei, H. Shokrollahi, K. Janghorban, H. Abiri, Eddy current and total power loss separation in the iron–phosphate–polyepoxy soft magnetic composites, Mater. Des. 30(10) (2009) 3989-3995.

DOI: 10.1016/j.matdes.2009.05.026

Google Scholar

[15] S. Wu, A. Z. Sun, F. Q. Zhai, J. Wang, Q. Zhang, W. H. Xu, Annealing effects on magnetic properties of silicone-coated iron-based soft magnetic composites, J. Magn. Magn. Mater. 324(5) (2012) 818-822.

DOI: 10.1016/j.jmmm.2011.09.026

Google Scholar

[16] A. H. Taghvaei, H. Shokrollahi, M. Ghaffari, K. Janghorban, Influence of particle size and compaction pressure on the magnetic properties of iron-phenolic soft magnetic composites, J. Phys. Chem. Solids. 71(1) (2010) 7-11.

DOI: 10.1016/j.jpcs.2009.08.008

Google Scholar

[17] G. Herzer, W. Fernengel, E. Adler, On the theory of nucleation fields in uniaxial ferromagnets, J. Magn. Magn. Mater. 58(1-2) (1986) 48-54.

DOI: 10.1016/0304-8853(86)90121-6

Google Scholar

[18] H. Shokrollahi, K. Janghorban, Different annealing treatments for improvement of magnetic and electrical properties of soft magnetic composites, J. Magn. Magn. Mater. 317(1-2) (2007) 61-67.

DOI: 10.1016/j.jmmm.2007.04.011

Google Scholar