[1]
T. G. Nieh, J. Wadsworth, O. D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge, 1997, pp.22-31.
Google Scholar
[2]
R. Z. Valiev, N. A. Krasilnikov, N. K. Tsenev, Plastic Deformation of Alloys with Submicron-Grained Structure, Mater. Sci. Eng. A A137 (1991) 35-40.
DOI: 10.1016/0921-5093(91)90316-f
Google Scholar
[3]
R. Z. Valiev, R. S. Musalimov, N. K. Tsenev, The Non-Equilibrium State of Grain Boundaries and the Grain Boundary Precipitations in Aluminum Alloy, Phys. Status Solidi A A115 (1989) 451-457.
DOI: 10.1002/pssa.2211150211
Google Scholar
[4]
Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, R. G. Hong, Accumulative Roll-Bonding of 1100 Aluminum J. Jpn. Inst. Metals, 63 (1999) 790-795.
DOI: 10.2320/jinstmet1952.63.6_790
Google Scholar
[5]
J. Richert, M. Richert, A New Method for Unlimited Deformation of Metals and Alloys, Aluminum, 62 (1986) 604-607.
Google Scholar
[6]
T. Aizawa, K. Tatsuzawa, J. Kihara, Mechano-Metallugical Processing for Direct Fabrication of Non-Equilibrium Phase Materials, J. Facult. Eng. The University of Tokyo (B) XLII (1993) 261-279.
Google Scholar
[7]
Q. Cui, K. Ohori, Grain Refinement of a 6061 aluminum alloy by asymmetric warm-rolling, J. Jpn. Inst. Light Metals, 52 (2002) 185-189.
DOI: 10.2464/jilm.52.185
Google Scholar
[8]
M. Noda, K. Funami, M. Kobayashi, Improvement of Mechanical Properties of 3004 Aluminum Alloy by Heavy Working at Cryogenic Temperature, J. Jpn. Inst. Metals, 64 (2000) 395-398.
DOI: 10.2320/jinstmet1952.64.5_395
Google Scholar
[9]
R. S. Mishra, Z. Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R R50 (2005) 1-78.
Google Scholar
[10]
T. Ito, S. Shibasaki, M. Koma, M. Otsuka, Superplastic-Like Behavior in Medium Grained and Single Crystalline Al-Mg Solid Solution Alloys, J. Jpn. Inst. Metals, 66 (2002) 409-417.
DOI: 10.2320/jinstmet1952.66.4_409
Google Scholar
[11]
T. Ito, M. Koma, S. Shibasaki, M. Otsuka, Superplastic-Like Behavior for Al-Mg Alloys with High Concentration of Magnesium, J. Jpn. Inst. Metals 66 (2002) 476-484.
DOI: 10.2320/jinstmet1952.66.5_476
Google Scholar
[12]
A. A. Tavassoli, S. E. Razavi, N. M. Fallah, Superplastic Forming of a Commercial Aluminum Alloy, Metall. Trans. A 6A (1975) 591-594.
DOI: 10.1007/bf02658423
Google Scholar
[13]
T. R. McNelly, P. N. Caul, The Deformation Mechanisms of Low Temperature Superplasticity in Al-Mg Alloys, in: S. Hori, M. Tokizane, N. Furushiro (Eds. ), Superplasticity in Advanced Materials, The Japan Society for Research on Superplasticity, Tokyo, 1991, pp.413-421.
Google Scholar
[14]
R. R. Sawtell, G. L. Jensen, Mechanical Properties and Microstructures of Al-Mg-Sc Alloys, Metall. Trans. A 21A (1990) 421-430.
DOI: 10.1007/bf02782422
Google Scholar
[15]
T. G. Nieh, J. Wadsworth, O. D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge, 1997, pp.219-230.
Google Scholar
[16]
E. M. Taleff, G. A. Henshall, D. R. Lesuer, T. G. Nieh, Warm Formability of Aluminum- Magnesium Alloys, in: T.H. Sanders, E.A. Starke, Jr (Eds. ), Aluminum Alloys: Their Physical and Mechanical Properties (ICAA4), Georgia Institute of Technology, Atlanta, 1994, Vol. 1, pp.338-345.
Google Scholar
[17]
E. M. Taleff, D. R. Lesuer, J. Wadsworth, Enhanced Ductility in Coarse-Grained Al-Mg Alloys, Metall. Mater. Trans. A 27A (1996) 343-352.
DOI: 10.1007/bf02648411
Google Scholar
[18]
E. M. Taleff, G. A. Henshall, D. R. Lesuer, T. G. Nieh, J. Wadsworth, Enhanced Tensile Ductility in Al-Mg Alloys by Solid-Solution Interactions, in: J.D. Bryant, D.R. White (Eds. ), Aluminum and Magnesium for Automotive Applications, TMS, Warrendale, PA, 1996, pp.125-134.
DOI: 10.2172/201796
Google Scholar
[19]
E. M. Taleff, G. A. Henshall, D. R. Lesuer, T. G. Nieh, J. Wadsworth, Enhanced Tensile Ductility of Coarse-Grain Al-Mg Alloys, in: A.K. Ghosh, T.R. Bieler (Eds. ), Superplasticity and Superplastic Forming, TMS, Warrendale, PA, 1995, pp.3-10.
DOI: 10.2172/201796
Google Scholar
[20]
E. M. Taleff, G. A. Henshall, T. G. Nieh, D. R. Lesuer, J. Wadsworth, Warm-Temperature Tensile Ductility in Al-Mg Alloys, Metall. Mater. Trans. A 29A (1998) 1081-1091.
DOI: 10.1007/s11661-998-1017-x
Google Scholar
[21]
E. M. Taleff, T. Leon-Salamanca, R. A. Ketcham, R. Reyes and W. D. Carlson, Nondestructive Evaluation of Cavitation in an Al-Mg Material Deformation under Creep Conditions, J. Mater. Res. 15 (2000) 76-84.
DOI: 10.1557/jmr.2000.0015
Google Scholar
[22]
E. M. Taleff, D. R. Lesuer, C. K. Syn, G. A. Henshall, Creep Fracture during Solute-Drag Creep and Superplastic Deformation, in: R.K. Mahidhara, A.B. Geltmacher, K. Sadananda, P. Matic (Eds. ), Recent Advances in Fracture, TMS, Warrendale, PA, 1997, pp.295-306.
Google Scholar
[23]
M. A. Kulas, W. P. Green, E. M. Taleff, P. E. Krajewski, T. R. McNelley, Deformation Mechanisms in Superplastic AA5083 Materials, Metall. Mater. Trans. A 36A (2005) 1249-1261.
DOI: 10.1007/s11661-005-0217-x
Google Scholar
[24]
E. M. Taleff, P. J. Nevland, P. E. Krajewski, Tensile Ductility of Several Commercial Aluminum Alloys at Elevated Temperatures, Metall. Mater. Trans. A 32A (2001) 1119-1130.
DOI: 10.1007/s11661-001-0123-9
Google Scholar
[25]
O. D. Sherby, P. M. Burke, Mechanical Behavior of Crystalline Solids at Elevated Temperature, Prog. Mater. Sci. 13 (1967) 325-390.
Google Scholar
[26]
P. M. Yavari, T. G. Langdon, An Examination of the Breakdown in Creep by Viscous Glide in Solid Solution Alloys at High Stress Levels, Acta Metall. 30 (1982) 2181-2196.
DOI: 10.1016/0001-6160(82)90139-0
Google Scholar
[27]
A. H. Cottrell, M. A. Jaswon, Distribution of solute atoms round a show dislocation, Proc. R. Soc. Lon. Ser. A 199 (1949) 104-114.
Google Scholar
[28]
J. Weertman, Steady-State Creep of Crystals, J. Appl. Phys. 28 (1957) 1185-1189.
DOI: 10.1063/1.1722604
Google Scholar
[29]
J. Weertman, Creep of Indium, Lead, and Some of Their Alloys with Various Metals, Trans. Metall. Soc. AIME 218 (1960) 207-218.
Google Scholar