Superplastic Elongation through Deformation Mechanism Transition during High-Temperature Deformation in Thermally Unstable Fine-Grained Aluminum Solid Solution Alloy

Article Preview

Abstract:

In this study, the superplastic behavior on a fine-grained aluminum solid solution alloy consisting of thermally unstable microstructures was investigated. In order to obtain the fine-grained microstructure, friction stir processing (FSP) was applied to a commercial 5083 aluminum alloy. An equiaxial fine-grained microstructure of 7.8 mm was obtained after FSP, but this microstructure was thermally unstable at high temperatures. Commonly, for fine-grained superplasticity to occur (or to continue grain boundary sliding (GBS)), it is necessary to keep the fine-grained microstructure to less than 10 mm during the high-temperature deformation. However, in this study, a large elongation of over 200% was observed at high temperatures in spite of the occurrence of grain growth. From the microstructural observations, it was determined that the fine-grained microstructure was maintained until the early stage of deformation, but the transgranular deformation was observed at a strain of over 100%. The microstructural feature of the abovementioned transgranular deformation is similar to the deformation microstructure of the solute drag creep occurring in "Class I"-type solid solution alloys. This indicates that the deformation mechanism transition from GBS to the solute drag creep occurred during high-temperature deformation. Here, the possibility of occurrence of the superplastic elongation through deformation mechanism transition is discussed as a model of the thermally unstable aluminum solid solution alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-26

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. G. Nieh, J. Wadsworth, O. D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge, 1997, pp.22-31.

Google Scholar

[2] R. Z. Valiev, N. A. Krasilnikov, N. K. Tsenev, Plastic Deformation of Alloys with Submicron-Grained Structure, Mater. Sci. Eng. A A137 (1991) 35-40.

DOI: 10.1016/0921-5093(91)90316-f

Google Scholar

[3] R. Z. Valiev, R. S. Musalimov, N. K. Tsenev, The Non-Equilibrium State of Grain Boundaries and the Grain Boundary Precipitations in Aluminum Alloy, Phys. Status Solidi A A115 (1989) 451-457.

DOI: 10.1002/pssa.2211150211

Google Scholar

[4] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, R. G. Hong, Accumulative Roll-Bonding of 1100 Aluminum J. Jpn. Inst. Metals, 63 (1999) 790-795.

DOI: 10.2320/jinstmet1952.63.6_790

Google Scholar

[5] J. Richert, M. Richert, A New Method for Unlimited Deformation of Metals and Alloys, Aluminum, 62 (1986) 604-607.

Google Scholar

[6] T. Aizawa, K. Tatsuzawa, J. Kihara, Mechano-Metallugical Processing for Direct Fabrication of Non-Equilibrium Phase Materials, J. Facult. Eng. The University of Tokyo (B) XLII (1993) 261-279.

Google Scholar

[7] Q. Cui, K. Ohori, Grain Refinement of a 6061 aluminum alloy by asymmetric warm-rolling, J. Jpn. Inst. Light Metals, 52 (2002) 185-189.

DOI: 10.2464/jilm.52.185

Google Scholar

[8] M. Noda, K. Funami, M. Kobayashi, Improvement of Mechanical Properties of 3004 Aluminum Alloy by Heavy Working at Cryogenic Temperature, J. Jpn. Inst. Metals, 64 (2000) 395-398.

DOI: 10.2320/jinstmet1952.64.5_395

Google Scholar

[9] R. S. Mishra, Z. Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R R50 (2005) 1-78.

Google Scholar

[10] T. Ito, S. Shibasaki, M. Koma, M. Otsuka, Superplastic-Like Behavior in Medium Grained and Single Crystalline Al-Mg Solid Solution Alloys, J. Jpn. Inst. Metals, 66 (2002) 409-417.

DOI: 10.2320/jinstmet1952.66.4_409

Google Scholar

[11] T. Ito, M. Koma, S. Shibasaki, M. Otsuka, Superplastic-Like Behavior for Al-Mg Alloys with High Concentration of Magnesium, J. Jpn. Inst. Metals 66 (2002) 476-484.

DOI: 10.2320/jinstmet1952.66.5_476

Google Scholar

[12] A. A. Tavassoli, S. E. Razavi, N. M. Fallah, Superplastic Forming of a Commercial Aluminum Alloy, Metall. Trans. A 6A (1975) 591-594.

DOI: 10.1007/bf02658423

Google Scholar

[13] T. R. McNelly, P. N. Caul, The Deformation Mechanisms of Low Temperature Superplasticity in Al-Mg Alloys, in: S. Hori, M. Tokizane, N. Furushiro (Eds. ), Superplasticity in Advanced Materials, The Japan Society for Research on Superplasticity, Tokyo, 1991, pp.413-421.

Google Scholar

[14] R. R. Sawtell, G. L. Jensen, Mechanical Properties and Microstructures of Al-Mg-Sc Alloys, Metall. Trans. A 21A (1990) 421-430.

DOI: 10.1007/bf02782422

Google Scholar

[15] T. G. Nieh, J. Wadsworth, O. D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge, 1997, pp.219-230.

Google Scholar

[16] E. M. Taleff, G. A. Henshall, D. R. Lesuer, T. G. Nieh, Warm Formability of Aluminum- Magnesium Alloys, in: T.H. Sanders, E.A. Starke, Jr (Eds. ), Aluminum Alloys: Their Physical and Mechanical Properties (ICAA4), Georgia Institute of Technology, Atlanta, 1994, Vol. 1, pp.338-345.

Google Scholar

[17] E. M. Taleff, D. R. Lesuer, J. Wadsworth, Enhanced Ductility in Coarse-Grained Al-Mg Alloys, Metall. Mater. Trans. A 27A (1996) 343-352.

DOI: 10.1007/bf02648411

Google Scholar

[18] E. M. Taleff, G. A. Henshall, D. R. Lesuer, T. G. Nieh, J. Wadsworth, Enhanced Tensile Ductility in Al-Mg Alloys by Solid-Solution Interactions, in: J.D. Bryant, D.R. White (Eds. ), Aluminum and Magnesium for Automotive Applications, TMS, Warrendale, PA, 1996, pp.125-134.

DOI: 10.2172/201796

Google Scholar

[19] E. M. Taleff, G. A. Henshall, D. R. Lesuer, T. G. Nieh, J. Wadsworth, Enhanced Tensile Ductility of Coarse-Grain Al-Mg Alloys, in: A.K. Ghosh, T.R. Bieler (Eds. ), Superplasticity and Superplastic Forming, TMS, Warrendale, PA, 1995, pp.3-10.

DOI: 10.2172/201796

Google Scholar

[20] E. M. Taleff, G. A. Henshall, T. G. Nieh, D. R. Lesuer, J. Wadsworth, Warm-Temperature Tensile Ductility in Al-Mg Alloys, Metall. Mater. Trans. A 29A (1998) 1081-1091.

DOI: 10.1007/s11661-998-1017-x

Google Scholar

[21] E. M. Taleff, T. Leon-Salamanca, R. A. Ketcham, R. Reyes and W. D. Carlson, Nondestructive Evaluation of Cavitation in an Al-Mg Material Deformation under Creep Conditions, J. Mater. Res. 15 (2000) 76-84.

DOI: 10.1557/jmr.2000.0015

Google Scholar

[22] E. M. Taleff, D. R. Lesuer, C. K. Syn, G. A. Henshall, Creep Fracture during Solute-Drag Creep and Superplastic Deformation, in: R.K. Mahidhara, A.B. Geltmacher, K. Sadananda, P. Matic (Eds. ), Recent Advances in Fracture, TMS, Warrendale, PA, 1997, pp.295-306.

Google Scholar

[23] M. A. Kulas, W. P. Green, E. M. Taleff, P. E. Krajewski, T. R. McNelley, Deformation Mechanisms in Superplastic AA5083 Materials, Metall. Mater. Trans. A 36A (2005) 1249-1261.

DOI: 10.1007/s11661-005-0217-x

Google Scholar

[24] E. M. Taleff, P. J. Nevland, P. E. Krajewski, Tensile Ductility of Several Commercial Aluminum Alloys at Elevated Temperatures, Metall. Mater. Trans. A 32A (2001) 1119-1130.

DOI: 10.1007/s11661-001-0123-9

Google Scholar

[25] O. D. Sherby, P. M. Burke, Mechanical Behavior of Crystalline Solids at Elevated Temperature, Prog. Mater. Sci. 13 (1967) 325-390.

Google Scholar

[26] P. M. Yavari, T. G. Langdon, An Examination of the Breakdown in Creep by Viscous Glide in Solid Solution Alloys at High Stress Levels, Acta Metall. 30 (1982) 2181-2196.

DOI: 10.1016/0001-6160(82)90139-0

Google Scholar

[27] A. H. Cottrell, M. A. Jaswon, Distribution of solute atoms round a show dislocation, Proc. R. Soc. Lon. Ser. A 199 (1949) 104-114.

Google Scholar

[28] J. Weertman, Steady-State Creep of Crystals, J. Appl. Phys. 28 (1957) 1185-1189.

DOI: 10.1063/1.1722604

Google Scholar

[29] J. Weertman, Creep of Indium, Lead, and Some of Their Alloys with Various Metals, Trans. Metall. Soc. AIME 218 (1960) 207-218.

Google Scholar