[1]
L. Z. He, H. Zhang, J. Gui, Effects of pre- ageing treatment on subsequent artificial ageing characteristics of an Al- 1. 01 Mg- 0. 68 Si- 1. 78 Cu alloy. J. Mater. Sci. Technol. 26(2) (2010) 141-145.
DOI: 10.1016/s1005-0302(10)60023-0
Google Scholar
[2]
G. J. Thomas, The aging characterization of aluminum alloys Electro transmission studies of Al-Mg-Si alloys. J. Inst. Met. 90 (1961-62) 57-63.
Google Scholar
[3]
K. Matsuda, Y. Ishida, I. Mϋllerová, L. Frank, S. Ikeno, Cube- phase in excess Mg type Al- Mg-Si alloy studied by EFTEM. Mater. Sci. 41 (2006) 2605-2610.
DOI: 10.1007/s10853-006-7819-6
Google Scholar
[4]
S. Esmarili, X. Wang, D. J. Lloyd, On the precipitation-hardening behavior of the Al-Mg-Si-Cu alloy AA6111. Metall. Mater. Trans. A34 (2003) 751–763.
DOI: 10.1007/s11661-003-0110-4
Google Scholar
[5]
S. K. Panigrahi, R. Jayaganthan, V. Pancholi, M. Gupta, A study on the precipitation kinetics of coryorolled Al 6063 alloy, Mater. Chem. Phys. 122 (2010) 188-193.
DOI: 10.1016/j.matchemphys.2010.02.032
Google Scholar
[6]
M. Liua, Z. Wua, R. Yanga, J. Weia, Y. Yub, P. Skaretb, J. Rovenb Hans, DSC analyses of static and dynamic precipitation of an Al–Mg–Si–Cu aluminum alloy. Prog. Nat. Sci.: Mater. Int. 25 (2015) 153–158.
Google Scholar
[7]
Z. Boumerzoug, I. Hamdi, Effect of the Long Natural Aging on the Precipitation Sequence in Al-Mg-Si alloy. Adv. Mater. Res. 893 (2014) 375-380.
DOI: 10.4028/www.scientific.net/amr.893.375
Google Scholar
[8]
K. Fukui, M. Takeda, T. Endo, The Metastable Phase Responsible for Peak Hardness in the Ageing Temperature Range 403 - 483 K for an Al-Mg-Si Ternary Alloy, J. Mater. Sci. 40(2) (2005) 3317-3320.
DOI: 10.1007/s10853-005-2710-4
Google Scholar
[9]
M. Takeda, F. Ohkubo, T. Shirai, K. Fukui, Stability of Metastable Phases and Microstructures in the Ageing Process of Al-Mg-Si Ternary Alloys, J. Mater. Sci. 33(9) (1998) 2385-2390.
DOI: 10.1023/a:1004355824857
Google Scholar
[10]
R. C. Dorward, Preaging Effects in AI-Mg-Si Alloys Containing 0. 6 to 0. 9 Pct Mg2Si, Metallurg. Mater. Trans. B, 4(2) (1973) 507-512.
DOI: 10.1007/bf02648703
Google Scholar
[11]
C. D. Mariora, H. Nordmark, S. J. Andersen, R. Holmestad, Post-β' Phases and Their Influence on Micro- structure and Hardness in 6xxx Al-Mg-Si Alloys, J. Mater. Sci. 41(2) (2006) 471-478.
DOI: 10.1007/s10853-005-2470-1
Google Scholar
[12]
A. Hayoune, Thermal analysis of the impact of RT storage time on the strengthening of an Al-Mg-Si alloy. Mater. Sci. Appl. 3 (2012) 460-466.
DOI: 10.4236/msa.2012.37065
Google Scholar
[13]
M. Murayama, K. Hono, W. F. Miao, D. E. Laughlin, The effect of Cu additions on the precipitation kinetics in an Al-Mg-Si alloy with excess Si. Metall. Mater. Trans. A 32 (2001) 239-246.
DOI: 10.1007/s11661-001-0254-z
Google Scholar
[14]
L. Halldahl, Thermal analysis studies of the precipitation and dissolution processes of second phases in the Al-Si and Al-Si-Mg systems. Thermochim. Acta. 214 (1993) 33-40.
DOI: 10.1016/0040-6031(93)80034-8
Google Scholar
[15]
A. Hayoune, Thermal Analysis of the Impact of RT Storage Time on the Strengthening of an Al-Mg-Si Alloy. Mater. Sci. Appl. 3 (2012) 460-466.
DOI: 10.4236/msa.2012.37065
Google Scholar
[16]
H. E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem. 29 (1957) 1702.
Google Scholar
[17]
Kinzoku data book Japan Inst. Metals, Sendai, Japan, (1994) p.20.
Google Scholar
[18]
I. Hamdi, Z. Boumerzoug, L. Fellah, The activation energy of precipitation process in 6101 aluminum alloy. Innovation materials and structures technologies, METECH 14, (2014). pp.269-273.
Google Scholar
[19]
M. Yanagawa, S. Oie, M. Abe, Age hardening process of Al Mg Si alloys, J. Jpn. Inst. Light . Met. 43(3) (1993) 146.
DOI: 10.2464/jilm.43.146
Google Scholar
[20]
Z. H. Ismail, B. Bouchra, Age hardening characteristics of an Al Mg Si alloy, Acta Physica Hungaria, 71(1-2) (1992) 3.
Google Scholar