[1]
L. E. Murr, E. V. Esquivel, etc. Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V, Mater. Charact. 60(2) (2009) 96-105.
DOI: 10.1016/j.matchar.2008.07.006
Google Scholar
[2]
M. Koike, P. Greer, etc. Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies—Electron Beam Melting and Laser Beam Melting, Mater. 4(10) (2011) 1776-1792.
DOI: 10.3390/ma4101776
Google Scholar
[3]
E. Brandl, B. Baufeld, etc. Additive manufactured Ti-6Al-4V using welding wire: comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications, Phys. Procedia, 5 (2010) 595-606.
DOI: 10.1016/j.phpro.2010.08.087
Google Scholar
[4]
E. Brandl, U. Heckenberger, etc. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior, Mater. Des. 34 (2012) 159-169.
DOI: 10.1016/j.matdes.2011.07.067
Google Scholar
[5]
P. Kanagarajah, F. Brenne, T. Niendorf, H. J. Maier, Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading, Mater. Sci. Eng. A, 588 (2013) 188-195.
DOI: 10.1016/j.msea.2013.09.025
Google Scholar
[6]
P. Mercelis, J. -P. Kruth, Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyp. J. 12(5) (2006) 254-265.
DOI: 10.1108/13552540610707013
Google Scholar
[7]
H. Suo, Z. Chen, J. Liu, S. Gong, J. Xiao, Microstructure and Mechanical Properties of Ti-6Al-4V by Electron Beam Rapid Manufacturing, Rare Metal Mater. Eng. 43(4) (2014), 780-785.
DOI: 10.1016/s1875-5372(14)60083-7
Google Scholar
[8]
S. Tammas-Williams, H. Zhao, etc. XCT analysis of the influence of melt strategies on defect population in Ti–6Al–4V components manufactured by Selective Electron Beam Melting, Mater. Charact. 102 (2015) 47-61.
DOI: 10.1016/j.matchar.2015.02.008
Google Scholar
[9]
T. M. Mower, M. J. Long, Mechanical behavior of additive manufactured, powder-bed laser-fused materials, Mater. Sci. Eng. A, 651 (2016) 198-213.
DOI: 10.1016/j.msea.2015.10.068
Google Scholar
[10]
P. Edwards, M. Ramulu, Fatigue performance evaluation of selective laser melted Ti–6Al–4V, Mater. Sci. Eng. A, 598 (2014) 327-337.
DOI: 10.1016/j.msea.2014.01.041
Google Scholar
[11]
J. Papuga, A survey on evaluating the fatigue limit under multiaxial loading, Int. J. Fatigue, 33(2) (2011) 153-165.
DOI: 10.1016/j.ijfatigue.2010.08.001
Google Scholar
[12]
P. I. V, Long life fatigue under multiaxial loading, Int. J. Fatigue, 23(10) (2001) 839-949.
DOI: 10.1016/s0142-1123(01)00059-7
Google Scholar
[13]
S. Dhar, P. M. Dixit, R. Sethuraman, A continuum damage mechanics model for ductile fracture, Int. J. Press. Vessel. Pip. 77(6) (2000) 335-344.
DOI: 10.1016/s0308-0161(00)00019-3
Google Scholar
[14]
M. Zhang, Q. Meng, W. Hu, S. Shi, M. Hu, X. Zhang, Damage mechanics method for fatigue life prediction of Pitch-Change-Link, Int. J. Fatigue, 32(10) (2010) 1683-1688.
DOI: 10.1016/j.ijfatigue.2010.04.001
Google Scholar
[15]
B. Baufeld, E. Brandl, O. van der Biest, Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition, J. Mater. Process. Tech. 211(6) (2011).
DOI: 10.1016/j.jmatprotec.2011.01.018
Google Scholar
[16]
P. A. Kobryn, E. H. Moore, S. L. Semiatin, The effect of laser power and traverse speed on microstructure, porosity, and build height in laser-deposited Ti-6Al-4V, Scripta Materialia, 43(4) (2000) 299-305.
DOI: 10.1016/s1359-6462(00)00408-5
Google Scholar