[1]
W. M. Wilson, N. L. M. Cruden, Advances in coronary stent technology: current expectations and new developments, Res, Rep. Clin. Cardiol. 4 (2013) 85-96.
DOI: 10.2147/rrcc.s34408
Google Scholar
[2]
G. F. Attizzani, D. Capodanno, Y. Ohno, C. Tamburino, Mechanisms, Pathophysiology, and clinical aspects of incomplete stent apposition, J. Am. Coll. Cardiol. 63(14) (2014) 1355-1367.
DOI: 10.1016/j.jacc.2014.01.019
Google Scholar
[3]
H. Cho, M. Nango ,Y. Sakai, E. Sohgawa, K. Kageama, S. Hamamoto, T. Kitayama, A. Yamamoto, Y. Miki, Neointimal hyperplasia after stent placement across size-discrepant vessels in an animal study, Jpn. J. Radiol. 32(6) (2014) 340-346.
DOI: 10.1007/s11604-014-0311-3
Google Scholar
[4]
L. H. Timmins, M. W. Miller, F. J. Clubb, J. E. Moore, Increased artery wall stress post-stenting leads to greater intimal chickening, Lab. Investig. 91(6) (2011) 955-967.
DOI: 10.1038/labinvest.2011.57
Google Scholar
[5]
D. Martin, F. Boyle, Computational structural modelling of coronary stent deployment: a review, Comput. Methods in Biomech. Biomed. Eng. 14(4) (2011) 331-348.
Google Scholar
[6]
W. Wu, D. Gastaldi, K. Yang, L. Tan, L. Petrini, F. Migliavacca, Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels, Mater. Sci. Eng. B 176(20) (2011) 1733-1740.
DOI: 10.1016/j.mseb.2011.03.013
Google Scholar
[7]
S. M. Imani, A. M. Goudarzi, P. Valipour, M. Barzegar, J. Mahdinejad, S. E. Ghasemi, Application of finite element method to comparing the NIR stent with the multi-link stent for narrowings in coronary arteries, Acta Mechanica Solida Sinica 5 (2015).
DOI: 10.1016/s0894-9166(15)30053-7
Google Scholar
[8]
C. Conway, F. Sharif, J. P. Mcgarry, P. E. Mchugh, A computational test-bed to assess coronary stent implantation mechanics using a population-specific approach, Cardiovasc. Eng. Technol. 3(4) (2012) 374-387.
DOI: 10.1007/s13239-012-0104-8
Google Scholar
[9]
X. Shen, Z. M. Xie, Y. Y. Sun, B. B. Wu, Balloon-expandable stents expansion in tapered vessels and their interactions, J. Mech. Med. Boil. 14(6) (2014) 1440.
DOI: 10.1142/s0219519414400132
Google Scholar
[10]
S. Morlacchi, C. Chiastra, D. Gastaldi, G. Pennati, G. Dubini, F. Migliavacca, Sequential structural and fluid dynamic numerical simulations of a stented bifurcated coronary artery, J. Biomech. Eng. 133(12) (2011) 121010.
DOI: 10.1115/1.4005476
Google Scholar
[11]
H. Zahedmanesh, D. J. Kelly, C. Lally, Simulation of a balloon expandable stent in a realistic coronary artery- Determination of the optimum modelling strategy, J. Biomech. 43(11) (2010) 2126-2132.
DOI: 10.1016/j.jbiomech.2010.03.050
Google Scholar
[12]
A. Schiavone, L. G. Zhao, A. A. Abdel-Wahab, Effects of material, coating, design and plaque composition on stent deployment inside a stenotic artery-Finite element simulation, Mater. Sci. Eng. C 42 (2014) 479-488.
DOI: 10.1016/j.msec.2014.05.057
Google Scholar
[13]
S. J. Zhao, L. X. Gu, S. R. Froemming, Performance of self-expanding nitinol stent in a curved artery: impact of stent length and deployment orientation, J. Biomech. Eng. 134(7) (2012) 071007.
DOI: 10.1115/1.4007095
Google Scholar
[14]
L. H. Timmins, C. A. Meyer, M. R. Moreno, J. E. Moore, Mechanical modeling of stents deployed in tapered arteries, Ann. Biomed. Eng. 36(12) (2008) 2042-(2050).
DOI: 10.1007/s10439-008-9582-0
Google Scholar
[15]
I. Pericevic, C. Lally, D. Toner, D. J. Kelly, The influence of plaque composition on underlying arterial wall stress during stent expansion: The case for lesion-specific stents, Med. Eng. Phys. 31(4) (2009) 428-433.
DOI: 10.1016/j.medengphy.2008.11.005
Google Scholar