Extraction of Cellulose Microfibrils from Cassava Pulp

Article Preview

Abstract:

Due to the increasing demand of alternatives to unrenewable petroleum supplies, the use of renewable materials for industrial applications is becoming more important. In this regard, cellulose microfibrils (CM) extracted from cassava pulp (CP) are one of promising materials. The objective of this work is to develop a simple chemical treatment to obtain cellulose microfibrils from CP. The process included alkali treatment and acid hydrolysis treatment. The alkali and acid treatments of CP were carried out by using NaOH and HCl solutions, respectively. In an effort to find the optimal conditions for these chemical treatments, various reactions with different temperatures and times were carried out. Besides that, sequence of two reactions (alkali treatment and acid hydrolysis treatment) was also varied in order to find out a proper reaction order for this chemical treatment. The morphological structure, chemical composition, degree of crystallinity and thermal properties of CM were investigated using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. The results demonstrate that this alkali – acid treatment can remove partially non-cellulosic materials from the structure of fibers and result in higher thermal stability and degree of crystallinity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

427-433

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ed. M. Teixeira, A. A. S. Curvelo, A. C. Corrêa, J. M. Marconcini, G. M. Glenn, L. H. C. Mattoso, Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid), Ind. Crop. Prod. 37(1) (2012).

DOI: 10.1016/j.indcrop.2011.11.036

Google Scholar

[2] Y. Habibi, L. A. Lucia, O. J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications, Chem. Rev. 110(6) (2010) 3479-3500.

DOI: 10.1021/cr900339w

Google Scholar

[3] M. N. Angles, A. Dufresne, Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior, Macromolecules. 34(9) (2001) 2921-2931.

DOI: 10.1021/ma001555h

Google Scholar

[4] H. A. Silvério, W. P. F. Neto, N. O. Dantas, D. Pasquini, Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites, Ind. Crop. Prod. 44 (2013) 427-436.

DOI: 10.1016/j.indcrop.2012.10.014

Google Scholar

[5] H. Sadeghifar, I. Filpponen, S. P. Clarke, D. F. Brougham, D. S. Argyropoulos, Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface, J. Mater. Sci. 46(22) (2011) 7344-7355.

DOI: 10.1007/s10853-011-5696-0

Google Scholar

[6] B. M. Cherian, A. L. Leao, S. F. de Souza, S. Thomas, L. A. Pothan, M. Kottaisamy, Cellulose nanocomposites for high-performance applications, in: Susheel Kalia, B.S. Kaith and Inderjeet Kaur, Cellulose Fibers: Bio-and Nano-Polymer Composites, Springer., 2011, pp.539-587.

DOI: 10.1007/978-3-642-17370-7_21

Google Scholar

[7] J. Araki, M. Wada, S. Kuga, T. Okano, Birefringent glassy phase of a cellulose microcrystal suspension, Langmuir. 16(6) (2000) 2413-2415.

DOI: 10.1021/la9911180

Google Scholar

[8] M. Roman, W. T. Winter, Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose, Biomacromolecules. 5(5) (2004) 1671-1677.

DOI: 10.1021/bm034519+

Google Scholar

[9] L. Segal, J. Creely, A. Martin, C. Conrad, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Text. Res. J. 29(10) (1959) 786-794.

DOI: 10.1177/004051755902901003

Google Scholar

[10] D. Dai, M. Fan, P. Collins, Fabrication of nanocelluloses from hemp fibers and their application for the reinforcement of hemp fibers, Ind. Crop. Prod. 44 (2013) 192-199.

DOI: 10.1016/j.indcrop.2012.11.010

Google Scholar

[11] D. Klemm, B. Heublein, H. P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material, Angew. Chem. Int. Ed. Engl. 44(22) (2005) 3358-3393.

DOI: 10.1002/anie.200460587

Google Scholar

[12] J. I. Morán, V. A. Alvarez, V. P. Cyras, A. Vázquez, Extraction of cellulose and preparation of nanocellulose from sisal fibers, Cellulose. 15(1) (2008) 149-159.

DOI: 10.1007/s10570-007-9145-9

Google Scholar